ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc Unicode version

Theorem opprc 3801
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )

Proof of Theorem opprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-op 3603 . 2  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
2 3simpa 994 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  ->  ( A  e.  _V  /\  B  e.  _V ) )
32con3i 632 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) )
43alrimiv 1874 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
5 abeq0 3455 . . 3  |-  ( { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) }  =  (/)  <->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
64, 5sylibr 134 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  =  (/) )
71, 6eqtrid 2222 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 978   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   _Vcvv 2739   (/)c0 3424   {csn 3594   {cpr 3595   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425  df-op 3603
This theorem is referenced by:  opprc1  3802  opprc2  3803  ovprc  5912
  Copyright terms: Public domain W3C validator