| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oprcl | Unicode version | ||
| Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| oprcl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex2 2779 | 
. 2
 | |
| 2 | df-op 3631 | 
. . . . . . 7
 | |
| 3 | 2 | eleq2i 2263 | 
. . . . . 6
 | 
| 4 | df-clab 2183 | 
. . . . . 6
 | |
| 5 | 3, 4 | bitri 184 | 
. . . . 5
 | 
| 6 | 3simpa 996 | 
. . . . . 6
 | |
| 7 | 6 | sbimi 1778 | 
. . . . 5
 | 
| 8 | 5, 7 | sylbi 121 | 
. . . 4
 | 
| 9 | nfv 1542 | 
. . . . 5
 | |
| 10 | 9 | sbf 1791 | 
. . . 4
 | 
| 11 | 8, 10 | sylib 122 | 
. . 3
 | 
| 12 | 11 | exlimiv 1612 | 
. 2
 | 
| 13 | 1, 12 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-op 3631 | 
| This theorem is referenced by: opth1 4269 opth 4270 0nelop 4281 | 
| Copyright terms: Public domain | W3C validator |