| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprcl | Unicode version | ||
| Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| oprcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex2 2788 |
. 2
| |
| 2 | df-op 3642 |
. . . . . . 7
| |
| 3 | 2 | eleq2i 2272 |
. . . . . 6
|
| 4 | df-clab 2192 |
. . . . . 6
| |
| 5 | 3, 4 | bitri 184 |
. . . . 5
|
| 6 | 3simpa 997 |
. . . . . 6
| |
| 7 | 6 | sbimi 1787 |
. . . . 5
|
| 8 | 5, 7 | sylbi 121 |
. . . 4
|
| 9 | nfv 1551 |
. . . . 5
| |
| 10 | 9 | sbf 1800 |
. . . 4
|
| 11 | 8, 10 | sylib 122 |
. . 3
|
| 12 | 11 | exlimiv 1621 |
. 2
|
| 13 | 1, 12 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-op 3642 |
| This theorem is referenced by: opth1 4281 opth 4282 0nelop 4293 |
| Copyright terms: Public domain | W3C validator |