ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprcl Unicode version

Theorem oprcl 3843
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )

Proof of Theorem oprcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex2 2788 . 2  |-  ( C  e.  <. A ,  B >.  ->  E. y  y  e. 
<. A ,  B >. )
2 df-op 3642 . . . . . . 7  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
32eleq2i 2272 . . . . . 6  |-  ( y  e.  <. A ,  B >.  <-> 
y  e.  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) } )
4 df-clab 2192 . . . . . 6  |-  ( y  e.  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  <->  [ y  /  x ] ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) )
53, 4bitri 184 . . . . 5  |-  ( y  e.  <. A ,  B >.  <->  [ y  /  x ] ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) )
6 3simpa 997 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  ->  ( A  e.  _V  /\  B  e.  _V ) )
76sbimi 1787 . . . . 5  |-  ( [ y  /  x ]
( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  ->  [ y  /  x ] ( A  e. 
_V  /\  B  e.  _V ) )
85, 7sylbi 121 . . . 4  |-  ( y  e.  <. A ,  B >.  ->  [ y  /  x ] ( A  e. 
_V  /\  B  e.  _V ) )
9 nfv 1551 . . . . 5  |-  F/ x
( A  e.  _V  /\  B  e.  _V )
109sbf 1800 . . . 4  |-  ( [ y  /  x ]
( A  e.  _V  /\  B  e.  _V )  <->  ( A  e.  _V  /\  B  e.  _V )
)
118, 10sylib 122 . . 3  |-  ( y  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
1211exlimiv 1621 . 2  |-  ( E. y  y  e.  <. A ,  B >.  ->  ( A  e.  _V  /\  B  e.  _V ) )
131, 12syl 14 1  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981   E.wex 1515   [wsb 1785    e. wcel 2176   {cab 2191   _Vcvv 2772   {csn 3633   {cpr 3634   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774  df-op 3642
This theorem is referenced by:  opth1  4281  opth  4282  0nelop  4293
  Copyright terms: Public domain W3C validator