| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprcl | Unicode version | ||
| Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| oprcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex2 2779 |
. 2
| |
| 2 | df-op 3632 |
. . . . . . 7
| |
| 3 | 2 | eleq2i 2263 |
. . . . . 6
|
| 4 | df-clab 2183 |
. . . . . 6
| |
| 5 | 3, 4 | bitri 184 |
. . . . 5
|
| 6 | 3simpa 996 |
. . . . . 6
| |
| 7 | 6 | sbimi 1778 |
. . . . 5
|
| 8 | 5, 7 | sylbi 121 |
. . . 4
|
| 9 | nfv 1542 |
. . . . 5
| |
| 10 | 9 | sbf 1791 |
. . . 4
|
| 11 | 8, 10 | sylib 122 |
. . 3
|
| 12 | 11 | exlimiv 1612 |
. 2
|
| 13 | 1, 12 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-op 3632 |
| This theorem is referenced by: opth1 4270 opth 4271 0nelop 4282 |
| Copyright terms: Public domain | W3C validator |