ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3873
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1  |-  F/_ x A
nfop.2  |-  F/_ x B
Assertion
Ref Expression
nfop  |-  F/_ x <. A ,  B >.

Proof of Theorem nfop
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-op 3675 . 2  |-  <. A ,  B >.  =  { y  |  ( A  e. 
_V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
2 nfop.1 . . . . 5  |-  F/_ x A
32nfel1 2383 . . . 4  |-  F/ x  A  e.  _V
4 nfop.2 . . . . 5  |-  F/_ x B
54nfel1 2383 . . . 4  |-  F/ x  B  e.  _V
62nfsn 3726 . . . . . 6  |-  F/_ x { A }
72, 4nfpr 3716 . . . . . 6  |-  F/_ x { A ,  B }
86, 7nfpr 3716 . . . . 5  |-  F/_ x { { A } ,  { A ,  B } }
98nfcri 2366 . . . 4  |-  F/ x  y  e.  { { A } ,  { A ,  B } }
103, 5, 9nf3an 1612 . . 3  |-  F/ x
( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } )
1110nfab 2377 . 2  |-  F/_ x { y  |  ( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
121, 11nfcxfr 2369 1  |-  F/_ x <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    /\ w3a 1002    e. wcel 2200   {cab 2215   F/_wnfc 2359   _Vcvv 2799   {csn 3666   {cpr 3667   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  nfopd  3874  moop2  4338  fliftfuns  5922  dfmpo  6369  qliftfuns  6766  xpf1o  7005  caucvgprprlemaddq  7895  nfseq  10679  txcnp  14945  cnmpt1t  14959  cnmpt2t  14967
  Copyright terms: Public domain W3C validator