ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3774
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1  |-  F/_ x A
nfop.2  |-  F/_ x B
Assertion
Ref Expression
nfop  |-  F/_ x <. A ,  B >.

Proof of Theorem nfop
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-op 3585 . 2  |-  <. A ,  B >.  =  { y  |  ( A  e. 
_V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
2 nfop.1 . . . . 5  |-  F/_ x A
32nfel1 2319 . . . 4  |-  F/ x  A  e.  _V
4 nfop.2 . . . . 5  |-  F/_ x B
54nfel1 2319 . . . 4  |-  F/ x  B  e.  _V
62nfsn 3636 . . . . . 6  |-  F/_ x { A }
72, 4nfpr 3626 . . . . . 6  |-  F/_ x { A ,  B }
86, 7nfpr 3626 . . . . 5  |-  F/_ x { { A } ,  { A ,  B } }
98nfcri 2302 . . . 4  |-  F/ x  y  e.  { { A } ,  { A ,  B } }
103, 5, 9nf3an 1554 . . 3  |-  F/ x
( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } )
1110nfab 2313 . 2  |-  F/_ x { y  |  ( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
121, 11nfcxfr 2305 1  |-  F/_ x <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    /\ w3a 968    e. wcel 2136   {cab 2151   F/_wnfc 2295   _Vcvv 2726   {csn 3576   {cpr 3577   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  nfopd  3775  moop2  4229  fliftfuns  5766  dfmpo  6191  qliftfuns  6585  xpf1o  6810  caucvgprprlemaddq  7649  nfseq  10390  txcnp  12911  cnmpt1t  12925  cnmpt2t  12933
  Copyright terms: Public domain W3C validator