ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3796
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1  |-  F/_ x A
nfop.2  |-  F/_ x B
Assertion
Ref Expression
nfop  |-  F/_ x <. A ,  B >.

Proof of Theorem nfop
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-op 3603 . 2  |-  <. A ,  B >.  =  { y  |  ( A  e. 
_V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
2 nfop.1 . . . . 5  |-  F/_ x A
32nfel1 2330 . . . 4  |-  F/ x  A  e.  _V
4 nfop.2 . . . . 5  |-  F/_ x B
54nfel1 2330 . . . 4  |-  F/ x  B  e.  _V
62nfsn 3654 . . . . . 6  |-  F/_ x { A }
72, 4nfpr 3644 . . . . . 6  |-  F/_ x { A ,  B }
86, 7nfpr 3644 . . . . 5  |-  F/_ x { { A } ,  { A ,  B } }
98nfcri 2313 . . . 4  |-  F/ x  y  e.  { { A } ,  { A ,  B } }
103, 5, 9nf3an 1566 . . 3  |-  F/ x
( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } )
1110nfab 2324 . 2  |-  F/_ x { y  |  ( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
121, 11nfcxfr 2316 1  |-  F/_ x <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    /\ w3a 978    e. wcel 2148   {cab 2163   F/_wnfc 2306   _Vcvv 2739   {csn 3594   {cpr 3595   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by:  nfopd  3797  moop2  4253  fliftfuns  5801  dfmpo  6226  qliftfuns  6621  xpf1o  6846  caucvgprprlemaddq  7709  nfseq  10457  txcnp  13856  cnmpt1t  13870  cnmpt2t  13878
  Copyright terms: Public domain W3C validator