![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfop | Unicode version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 |
![]() ![]() ![]() ![]() |
nfop.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfop |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3613 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfop.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | nfel1 2340 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
4 | nfop.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 4 | nfel1 2340 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2 | nfsn 3664 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4 | nfpr 3654 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 6, 7 | nfpr 3654 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | nfcri 2323 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3, 5, 9 | nf3an 1576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | nfab 2334 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | nfcxfr 2326 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 |
This theorem is referenced by: nfopd 3807 moop2 4263 fliftfuns 5812 dfmpo 6237 qliftfuns 6632 xpf1o 6857 caucvgprprlemaddq 7720 nfseq 10468 txcnp 14042 cnmpt1t 14056 cnmpt2t 14064 |
Copyright terms: Public domain | W3C validator |