ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop Unicode version

Theorem nfop 3806
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1  |-  F/_ x A
nfop.2  |-  F/_ x B
Assertion
Ref Expression
nfop  |-  F/_ x <. A ,  B >.

Proof of Theorem nfop
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-op 3613 . 2  |-  <. A ,  B >.  =  { y  |  ( A  e. 
_V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
2 nfop.1 . . . . 5  |-  F/_ x A
32nfel1 2340 . . . 4  |-  F/ x  A  e.  _V
4 nfop.2 . . . . 5  |-  F/_ x B
54nfel1 2340 . . . 4  |-  F/ x  B  e.  _V
62nfsn 3664 . . . . . 6  |-  F/_ x { A }
72, 4nfpr 3654 . . . . . 6  |-  F/_ x { A ,  B }
86, 7nfpr 3654 . . . . 5  |-  F/_ x { { A } ,  { A ,  B } }
98nfcri 2323 . . . 4  |-  F/ x  y  e.  { { A } ,  { A ,  B } }
103, 5, 9nf3an 1576 . . 3  |-  F/ x
( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } )
1110nfab 2334 . 2  |-  F/_ x { y  |  ( A  e.  _V  /\  B  e.  _V  /\  y  e.  { { A } ,  { A ,  B } } ) }
121, 11nfcxfr 2326 1  |-  F/_ x <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    /\ w3a 979    e. wcel 2158   {cab 2173   F/_wnfc 2316   _Vcvv 2749   {csn 3604   {cpr 3605   <.cop 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613
This theorem is referenced by:  nfopd  3807  moop2  4263  fliftfuns  5812  dfmpo  6237  qliftfuns  6632  xpf1o  6857  caucvgprprlemaddq  7720  nfseq  10468  txcnp  14042  cnmpt1t  14056  cnmpt2t  14064
  Copyright terms: Public domain W3C validator