| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opeq1 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| opeq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | 
. . . . . 6
 | |
| 2 | 1 | anbi1d 465 | 
. . . . 5
 | 
| 3 | sneq 3633 | 
. . . . . . 7
 | |
| 4 | preq1 3699 | 
. . . . . . 7
 | |
| 5 | 3, 4 | preq12d 3707 | 
. . . . . 6
 | 
| 6 | 5 | eleq2d 2266 | 
. . . . 5
 | 
| 7 | 2, 6 | anbi12d 473 | 
. . . 4
 | 
| 8 | df-3an 982 | 
. . . 4
 | |
| 9 | df-3an 982 | 
. . . 4
 | |
| 10 | 7, 8, 9 | 3bitr4g 223 | 
. . 3
 | 
| 11 | 10 | abbidv 2314 | 
. 2
 | 
| 12 | df-op 3631 | 
. 2
 | |
| 13 | df-op 3631 | 
. 2
 | |
| 14 | 11, 12, 13 | 3eqtr4g 2254 | 
1
 | 
| Copyright terms: Public domain | W3C validator |