ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop Unicode version

Theorem dfop 3832
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1  |-  A  e. 
_V
dfop.2  |-  B  e. 
_V
Assertion
Ref Expression
dfop  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2  |-  A  e. 
_V
2 dfop.2 . 2  |-  B  e. 
_V
3 dfopg 3831 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
41, 2, 3mp2an 426 1  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   {cpr 3644   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-op 3652
This theorem is referenced by:  opid  3851  elop  4293  opi1  4294  opi2  4295  opeqsn  4315  opeqpr  4316  uniop  4318  op1stb  4543  xpsspw  4805  relop  4846  funopg  5324  funopsn  5785
  Copyright terms: Public domain W3C validator