Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfop | Unicode version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
dfop.1 | |
dfop.2 |
Ref | Expression |
---|---|
dfop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 | |
2 | dfop.2 | . 2 | |
3 | dfopg 3756 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cvv 2726 csn 3576 cpr 3577 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-op 3585 |
This theorem is referenced by: opid 3776 elop 4209 opi1 4210 opi2 4211 opeqsn 4230 opeqpr 4231 uniop 4233 op1stb 4456 xpsspw 4716 relop 4754 funopg 5222 |
Copyright terms: Public domain | W3C validator |