| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfop | Unicode version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfop.1 |
|
| dfop.2 |
|
| Ref | Expression |
|---|---|
| dfop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfop.1 |
. 2
| |
| 2 | dfop.2 |
. 2
| |
| 3 | dfopg 3855 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-op 3675 |
| This theorem is referenced by: opid 3875 elop 4317 opi1 4318 opi2 4319 opeqsn 4339 opeqpr 4340 uniop 4342 op1stb 4569 xpsspw 4831 relop 4872 funopg 5352 funopsn 5817 |
| Copyright terms: Public domain | W3C validator |