Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfop | Unicode version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
dfop.1 | |
dfop.2 |
Ref | Expression |
---|---|
dfop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 | |
2 | dfop.2 | . 2 | |
3 | dfopg 3761 | . 2 | |
4 | 1, 2, 3 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 cvv 2730 csn 3581 cpr 3582 cop 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-op 3590 |
This theorem is referenced by: opid 3781 elop 4214 opi1 4215 opi2 4216 opeqsn 4235 opeqpr 4236 uniop 4238 op1stb 4461 xpsspw 4721 relop 4759 funopg 5230 |
Copyright terms: Public domain | W3C validator |