ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop Unicode version

Theorem dfop 3762
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1  |-  A  e. 
_V
dfop.2  |-  B  e. 
_V
Assertion
Ref Expression
dfop  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2  |-  A  e. 
_V
2 dfop.2 . 2  |-  B  e. 
_V
3 dfopg 3761 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
41, 2, 3mp2an 424 1  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3581   {cpr 3582   <.cop 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-op 3590
This theorem is referenced by:  opid  3781  elop  4214  opi1  4215  opi2  4216  opeqsn  4235  opeqpr  4236  uniop  4238  op1stb  4461  xpsspw  4721  relop  4759  funopg  5230
  Copyright terms: Public domain W3C validator