ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop Unicode version

Theorem dfop 3808
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1  |-  A  e. 
_V
dfop.2  |-  B  e. 
_V
Assertion
Ref Expression
dfop  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2  |-  A  e. 
_V
2 dfop.2 . 2  |-  B  e. 
_V
3 dfopg 3807 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
41, 2, 3mp2an 426 1  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623   {cpr 3624   <.cop 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-op 3632
This theorem is referenced by:  opid  3827  elop  4265  opi1  4266  opi2  4267  opeqsn  4286  opeqpr  4287  uniop  4289  op1stb  4514  xpsspw  4776  relop  4817  funopg  5293
  Copyright terms: Public domain W3C validator