ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop Unicode version

Theorem dfop 3757
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1  |-  A  e. 
_V
dfop.2  |-  B  e. 
_V
Assertion
Ref Expression
dfop  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2  |-  A  e. 
_V
2 dfop.2 . 2  |-  B  e. 
_V
3 dfopg 3756 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
41, 2, 3mp2an 423 1  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   {cpr 3577   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-op 3585
This theorem is referenced by:  opid  3776  elop  4209  opi1  4210  opi2  4211  opeqsn  4230  opeqpr  4231  uniop  4233  op1stb  4456  xpsspw  4716  relop  4754  funopg  5222
  Copyright terms: Public domain W3C validator