ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2 Unicode version

Theorem opeq2 3766
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opeq2  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )

Proof of Theorem opeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  _V  <->  B  e.  _V ) )
21anbi2d 461 . . . . 5  |-  ( A  =  B  ->  (
( C  e.  _V  /\  A  e.  _V )  <->  ( C  e.  _V  /\  B  e.  _V )
) )
3 eqidd 2171 . . . . . . 7  |-  ( A  =  B  ->  { C }  =  { C } )
4 preq2 3661 . . . . . . 7  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)
53, 4preq12d 3668 . . . . . 6  |-  ( A  =  B  ->  { { C } ,  { C ,  A } }  =  { { C } ,  { C ,  B } } )
65eleq2d 2240 . . . . 5  |-  ( A  =  B  ->  (
x  e.  { { C } ,  { C ,  A } }  <->  x  e.  { { C } ,  { C ,  B } } ) )
72, 6anbi12d 470 . . . 4  |-  ( A  =  B  ->  (
( ( C  e. 
_V  /\  A  e.  _V )  /\  x  e.  { { C } ,  { C ,  A } } )  <->  ( ( C  e.  _V  /\  B  e.  _V )  /\  x  e.  { { C } ,  { C ,  B } } ) ) )
8 df-3an 975 . . . 4  |-  ( ( C  e.  _V  /\  A  e.  _V  /\  x  e.  { { C } ,  { C ,  A } } )  <->  ( ( C  e.  _V  /\  A  e.  _V )  /\  x  e.  { { C } ,  { C ,  A } } ) )
9 df-3an 975 . . . 4  |-  ( ( C  e.  _V  /\  B  e.  _V  /\  x  e.  { { C } ,  { C ,  B } } )  <->  ( ( C  e.  _V  /\  B  e.  _V )  /\  x  e.  { { C } ,  { C ,  B } } ) )
107, 8, 93bitr4g 222 . . 3  |-  ( A  =  B  ->  (
( C  e.  _V  /\  A  e.  _V  /\  x  e.  { { C } ,  { C ,  A } } )  <-> 
( C  e.  _V  /\  B  e.  _V  /\  x  e.  { { C } ,  { C ,  B } } ) ) )
1110abbidv 2288 . 2  |-  ( A  =  B  ->  { x  |  ( C  e. 
_V  /\  A  e.  _V  /\  x  e.  { { C } ,  { C ,  A } } ) }  =  { x  |  ( C  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { C } ,  { C ,  B } } ) } )
12 df-op 3592 . 2  |-  <. C ,  A >.  =  { x  |  ( C  e. 
_V  /\  A  e.  _V  /\  x  e.  { { C } ,  { C ,  A } } ) }
13 df-op 3592 . 2  |-  <. C ,  B >.  =  { x  |  ( C  e. 
_V  /\  B  e.  _V  /\  x  e.  { { C } ,  { C ,  B } } ) }
1411, 12, 133eqtr4g 2228 1  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   {cab 2156   _Vcvv 2730   {csn 3583   {cpr 3584   <.cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  opeq12  3767  opeq2i  3769  opeq2d  3772  oteq2  3775  oteq3  3776  breq2  3993  cbvopab2  4063  cbvopab2v  4066  opthg  4223  eqvinop  4228  opelopabsb  4245  opelxp  4641  opabid2  4742  elrn2g  4801  opeldm  4814  opeldmg  4816  elrn2  4853  opelresg  4898  iss  4937  elimasng  4979  issref  4993  dmsnopg  5082  cnvsng  5096  elxp4  5098  elxp5  5099  dffun5r  5210  funopg  5232  f1osng  5483  tz6.12f  5525  fsn  5668  fsng  5669  fvsng  5692  oveq2  5861  cbvoprab2  5926  ovg  5991  opabex3d  6100  opabex3  6101  op1stg  6129  op2ndg  6130  oprssdmm  6150  op1steq  6158  dfoprab4f  6172  tfrlemibxssdm  6306  tfr1onlembxssdm  6322  tfrcllembxssdm  6335  elixpsn  6713  ixpsnf1o  6714  mapsnen  6789  xpsnen  6799  xpassen  6808  xpf1o  6822  djulclr  7026  djurclr  7027  djulcl  7028  djurcl  7029  djulclb  7032  inl11  7042  djuss  7047  1stinl  7051  2ndinl  7052  1stinr  7053  2ndinr  7054  elreal  7790  ax1rid  7839  fseq1p1m1  10050  cnmpt21  13085  djucllem  13835
  Copyright terms: Public domain W3C validator