| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 |
. . . . . 6
| |
| 2 | 1 | anbi2d 464 |
. . . . 5
|
| 3 | eqidd 2230 |
. . . . . . 7
| |
| 4 | preq2 3744 |
. . . . . . 7
| |
| 5 | 3, 4 | preq12d 3751 |
. . . . . 6
|
| 6 | 5 | eleq2d 2299 |
. . . . 5
|
| 7 | 2, 6 | anbi12d 473 |
. . . 4
|
| 8 | df-3an 1004 |
. . . 4
| |
| 9 | df-3an 1004 |
. . . 4
| |
| 10 | 7, 8, 9 | 3bitr4g 223 |
. . 3
|
| 11 | 10 | abbidv 2347 |
. 2
|
| 12 | df-op 3675 |
. 2
| |
| 13 | df-op 3675 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opeq12 3859 opeq2i 3861 opeq2d 3864 oteq2 3867 oteq3 3868 breq2 4087 cbvopab2 4158 cbvopab2v 4161 opthg 4324 eqvinop 4329 opelopabsb 4348 opelxp 4749 opabid2 4853 elrn2g 4912 opeldm 4926 opeldmg 4928 elrn2 4966 opelresg 5012 iss 5051 elimasng 5096 issref 5111 dmsnopg 5200 cnvsng 5214 elxp4 5216 elxp5 5217 dffun5r 5330 funopg 5352 f1osng 5614 tz6.12f 5656 fsn 5807 fsng 5808 fvsng 5835 oveq2 6009 cbvoprab2 6077 ovg 6144 opabex3d 6266 opabex3 6267 op1stg 6296 op2ndg 6297 oprssdmm 6317 op1steq 6325 dfoprab4f 6339 tfrlemibxssdm 6473 tfr1onlembxssdm 6489 tfrcllembxssdm 6502 elixpsn 6882 ixpsnf1o 6883 mapsnen 6964 xpsnen 6980 xpassen 6989 xpf1o 7005 djulclr 7216 djurclr 7217 djulcl 7218 djurcl 7219 djulclb 7222 inl11 7232 djuss 7237 1stinl 7241 2ndinl 7242 1stinr 7243 2ndinr 7244 elreal 8015 ax1rid 8064 fseq1p1m1 10290 pfxval 11206 swrdccatin1 11257 swrdccat3blem 11271 imasaddfnlemg 13347 cnmpt21 14965 djucllem 16164 |
| Copyright terms: Public domain | W3C validator |