| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . . . . 6
| |
| 2 | 1 | anbi2d 464 |
. . . . 5
|
| 3 | eqidd 2206 |
. . . . . . 7
| |
| 4 | preq2 3711 |
. . . . . . 7
| |
| 5 | 3, 4 | preq12d 3718 |
. . . . . 6
|
| 6 | 5 | eleq2d 2275 |
. . . . 5
|
| 7 | 2, 6 | anbi12d 473 |
. . . 4
|
| 8 | df-3an 983 |
. . . 4
| |
| 9 | df-3an 983 |
. . . 4
| |
| 10 | 7, 8, 9 | 3bitr4g 223 |
. . 3
|
| 11 | 10 | abbidv 2323 |
. 2
|
| 12 | df-op 3642 |
. 2
| |
| 13 | df-op 3642 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opeq12 3821 opeq2i 3823 opeq2d 3826 oteq2 3829 oteq3 3830 breq2 4049 cbvopab2 4119 cbvopab2v 4122 opthg 4283 eqvinop 4288 opelopabsb 4307 opelxp 4706 opabid2 4810 elrn2g 4869 opeldm 4882 opeldmg 4884 elrn2 4921 opelresg 4967 iss 5006 elimasng 5051 issref 5066 dmsnopg 5155 cnvsng 5169 elxp4 5171 elxp5 5172 dffun5r 5284 funopg 5306 f1osng 5565 tz6.12f 5607 fsn 5754 fsng 5755 fvsng 5782 oveq2 5954 cbvoprab2 6020 ovg 6087 opabex3d 6208 opabex3 6209 op1stg 6238 op2ndg 6239 oprssdmm 6259 op1steq 6267 dfoprab4f 6281 tfrlemibxssdm 6415 tfr1onlembxssdm 6431 tfrcllembxssdm 6444 elixpsn 6824 ixpsnf1o 6825 mapsnen 6905 xpsnen 6918 xpassen 6927 xpf1o 6943 djulclr 7153 djurclr 7154 djulcl 7155 djurcl 7156 djulclb 7159 inl11 7169 djuss 7174 1stinl 7178 2ndinl 7179 1stinr 7180 2ndinr 7181 elreal 7943 ax1rid 7992 fseq1p1m1 10218 pfxval 11130 imasaddfnlemg 13179 cnmpt21 14796 djucllem 15773 |
| Copyright terms: Public domain | W3C validator |