| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2270 |
. . . . . 6
| |
| 2 | 1 | anbi2d 464 |
. . . . 5
|
| 3 | eqidd 2208 |
. . . . . . 7
| |
| 4 | preq2 3721 |
. . . . . . 7
| |
| 5 | 3, 4 | preq12d 3728 |
. . . . . 6
|
| 6 | 5 | eleq2d 2277 |
. . . . 5
|
| 7 | 2, 6 | anbi12d 473 |
. . . 4
|
| 8 | df-3an 983 |
. . . 4
| |
| 9 | df-3an 983 |
. . . 4
| |
| 10 | 7, 8, 9 | 3bitr4g 223 |
. . 3
|
| 11 | 10 | abbidv 2325 |
. 2
|
| 12 | df-op 3652 |
. 2
| |
| 13 | df-op 3652 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: opeq12 3835 opeq2i 3837 opeq2d 3840 oteq2 3843 oteq3 3844 breq2 4063 cbvopab2 4134 cbvopab2v 4137 opthg 4300 eqvinop 4305 opelopabsb 4324 opelxp 4723 opabid2 4827 elrn2g 4886 opeldm 4900 opeldmg 4902 elrn2 4939 opelresg 4985 iss 5024 elimasng 5069 issref 5084 dmsnopg 5173 cnvsng 5187 elxp4 5189 elxp5 5190 dffun5r 5302 funopg 5324 f1osng 5586 tz6.12f 5628 fsn 5775 fsng 5776 fvsng 5803 oveq2 5975 cbvoprab2 6041 ovg 6108 opabex3d 6229 opabex3 6230 op1stg 6259 op2ndg 6260 oprssdmm 6280 op1steq 6288 dfoprab4f 6302 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 elixpsn 6845 ixpsnf1o 6846 mapsnen 6927 xpsnen 6941 xpassen 6950 xpf1o 6966 djulclr 7177 djurclr 7178 djulcl 7179 djurcl 7180 djulclb 7183 inl11 7193 djuss 7198 1stinl 7202 2ndinl 7203 1stinr 7204 2ndinr 7205 elreal 7976 ax1rid 8025 fseq1p1m1 10251 pfxval 11165 swrdccatin1 11216 swrdccat3blem 11230 imasaddfnlemg 13261 cnmpt21 14878 djucllem 15936 |
| Copyright terms: Public domain | W3C validator |