| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . . . . 6
| |
| 2 | 1 | anbi2d 464 |
. . . . 5
|
| 3 | eqidd 2206 |
. . . . . . 7
| |
| 4 | preq2 3711 |
. . . . . . 7
| |
| 5 | 3, 4 | preq12d 3718 |
. . . . . 6
|
| 6 | 5 | eleq2d 2275 |
. . . . 5
|
| 7 | 2, 6 | anbi12d 473 |
. . . 4
|
| 8 | df-3an 983 |
. . . 4
| |
| 9 | df-3an 983 |
. . . 4
| |
| 10 | 7, 8, 9 | 3bitr4g 223 |
. . 3
|
| 11 | 10 | abbidv 2323 |
. 2
|
| 12 | df-op 3642 |
. 2
| |
| 13 | df-op 3642 |
. 2
| |
| 14 | 11, 12, 13 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opeq12 3821 opeq2i 3823 opeq2d 3826 oteq2 3829 oteq3 3830 breq2 4048 cbvopab2 4118 cbvopab2v 4121 opthg 4282 eqvinop 4287 opelopabsb 4306 opelxp 4705 opabid2 4809 elrn2g 4868 opeldm 4881 opeldmg 4883 elrn2 4920 opelresg 4966 iss 5005 elimasng 5050 issref 5065 dmsnopg 5154 cnvsng 5168 elxp4 5170 elxp5 5171 dffun5r 5283 funopg 5305 f1osng 5563 tz6.12f 5605 fsn 5752 fsng 5753 fvsng 5780 oveq2 5952 cbvoprab2 6018 ovg 6085 opabex3d 6206 opabex3 6207 op1stg 6236 op2ndg 6237 oprssdmm 6257 op1steq 6265 dfoprab4f 6279 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 elixpsn 6822 ixpsnf1o 6823 mapsnen 6903 xpsnen 6916 xpassen 6925 xpf1o 6941 djulclr 7151 djurclr 7152 djulcl 7153 djurcl 7154 djulclb 7157 inl11 7167 djuss 7172 1stinl 7176 2ndinl 7177 1stinr 7178 2ndinr 7179 elreal 7941 ax1rid 7990 fseq1p1m1 10216 imasaddfnlemg 13146 cnmpt21 14763 djucllem 15740 |
| Copyright terms: Public domain | W3C validator |