| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opeq2 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| opeq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | 
. . . . . 6
 | |
| 2 | 1 | anbi2d 464 | 
. . . . 5
 | 
| 3 | eqidd 2197 | 
. . . . . . 7
 | |
| 4 | preq2 3700 | 
. . . . . . 7
 | |
| 5 | 3, 4 | preq12d 3707 | 
. . . . . 6
 | 
| 6 | 5 | eleq2d 2266 | 
. . . . 5
 | 
| 7 | 2, 6 | anbi12d 473 | 
. . . 4
 | 
| 8 | df-3an 982 | 
. . . 4
 | |
| 9 | df-3an 982 | 
. . . 4
 | |
| 10 | 7, 8, 9 | 3bitr4g 223 | 
. . 3
 | 
| 11 | 10 | abbidv 2314 | 
. 2
 | 
| 12 | df-op 3631 | 
. 2
 | |
| 13 | df-op 3631 | 
. 2
 | |
| 14 | 11, 12, 13 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: opeq12 3810 opeq2i 3812 opeq2d 3815 oteq2 3818 oteq3 3819 breq2 4037 cbvopab2 4107 cbvopab2v 4110 opthg 4271 eqvinop 4276 opelopabsb 4294 opelxp 4693 opabid2 4797 elrn2g 4856 opeldm 4869 opeldmg 4871 elrn2 4908 opelresg 4953 iss 4992 elimasng 5037 issref 5052 dmsnopg 5141 cnvsng 5155 elxp4 5157 elxp5 5158 dffun5r 5270 funopg 5292 f1osng 5545 tz6.12f 5587 fsn 5734 fsng 5735 fvsng 5758 oveq2 5930 cbvoprab2 5995 ovg 6062 opabex3d 6178 opabex3 6179 op1stg 6208 op2ndg 6209 oprssdmm 6229 op1steq 6237 dfoprab4f 6251 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 elixpsn 6794 ixpsnf1o 6795 mapsnen 6870 xpsnen 6880 xpassen 6889 xpf1o 6905 djulclr 7115 djurclr 7116 djulcl 7117 djurcl 7118 djulclb 7121 inl11 7131 djuss 7136 1stinl 7140 2ndinl 7141 1stinr 7142 2ndinr 7143 elreal 7895 ax1rid 7944 fseq1p1m1 10169 imasaddfnlemg 12957 cnmpt21 14527 djucllem 15446 | 
| Copyright terms: Public domain | W3C validator |