ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 Unicode version

Theorem opprc1 3763
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3762. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1  |-  ( -.  A  e.  _V  ->  <. A ,  B >.  =  (/) )

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  A  e.  _V )
21con3i 622 . 2  |-  ( -.  A  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 opprc 3762 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
42, 3syl 14 1  |-  ( -.  A  e.  _V  ->  <. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712   (/)c0 3394   <.cop 3563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-nul 3395  df-op 3569
This theorem is referenced by:  brprcneu  5458
  Copyright terms: Public domain W3C validator