ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 Unicode version

Theorem opprc1 3826
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3825. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1  |-  ( -.  A  e.  _V  ->  <. A ,  B >.  =  (/) )

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  A  e.  _V )
21con3i 633 . 2  |-  ( -.  A  e.  _V  ->  -.  ( A  e.  _V  /\  B  e.  _V )
)
3 opprc 3825 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
42, 3syl 14 1  |-  ( -.  A  e.  _V  ->  <. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   <.cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-nul 3447  df-op 3627
This theorem is referenced by:  brprcneu  5547
  Copyright terms: Public domain W3C validator