Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 Unicode version

Theorem opprc1 3763
 Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3762. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 108 . . 3
21con3i 622 . 2
3 opprc 3762 . 2
42, 3syl 14 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 103   wceq 1335   wcel 2128  cvv 2712  c0 3394  cop 3563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-nul 3395  df-op 3569 This theorem is referenced by:  brprcneu  5458
 Copyright terms: Public domain W3C validator