Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opm | Unicode version |
Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
opm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3598 | . . . . 5 | |
2 | 1 | eleq2i 2242 | . . . 4 |
3 | 2 | exbii 1603 | . . 3 |
4 | abid 2163 | . . . 4 | |
5 | 4 | exbii 1603 | . . 3 |
6 | 3, 5 | bitri 184 | . 2 |
7 | 19.42v 1904 | . . 3 | |
8 | df-3an 980 | . . . 4 | |
9 | 8 | exbii 1603 | . . 3 |
10 | df-3an 980 | . . 3 | |
11 | 7, 9, 10 | 3bitr4ri 213 | . 2 |
12 | 3simpa 994 | . . 3 | |
13 | id 19 | . . . 4 | |
14 | snexg 4179 | . . . . . 6 | |
15 | 14 | adantr 276 | . . . . 5 |
16 | prmg 3710 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | 13, 17, 10 | sylanbrc 417 | . . 3 |
19 | 12, 18 | impbii 126 | . 2 |
20 | 6, 11, 19 | 3bitr2i 208 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 w3a 978 wex 1490 wcel 2146 cab 2161 cvv 2735 csn 3589 cpr 3590 cop 3592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 |
This theorem is referenced by: opnzi 4229 opeqex 4243 cnm 7806 setsfun0 12463 |
Copyright terms: Public domain | W3C validator |