| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opm | Unicode version | ||
| Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| opm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-op 3642 |
. . . . 5
| |
| 2 | 1 | eleq2i 2272 |
. . . 4
|
| 3 | 2 | exbii 1628 |
. . 3
|
| 4 | abid 2193 |
. . . 4
| |
| 5 | 4 | exbii 1628 |
. . 3
|
| 6 | 3, 5 | bitri 184 |
. 2
|
| 7 | 19.42v 1930 |
. . 3
| |
| 8 | df-3an 983 |
. . . 4
| |
| 9 | 8 | exbii 1628 |
. . 3
|
| 10 | df-3an 983 |
. . 3
| |
| 11 | 7, 9, 10 | 3bitr4ri 213 |
. 2
|
| 12 | 3simpa 997 |
. . 3
| |
| 13 | id 19 |
. . . 4
| |
| 14 | snexg 4229 |
. . . . . 6
| |
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | prmg 3754 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | 13, 17, 10 | sylanbrc 417 |
. . 3
|
| 19 | 12, 18 | impbii 126 |
. 2
|
| 20 | 6, 11, 19 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opnzi 4280 opeqex 4295 funopsn 5764 cnm 7947 setsfun0 12901 |
| Copyright terms: Public domain | W3C validator |