| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opm | Unicode version | ||
| Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| opm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-op 3675 |
. . . . 5
| |
| 2 | 1 | eleq2i 2296 |
. . . 4
|
| 3 | 2 | exbii 1651 |
. . 3
|
| 4 | abid 2217 |
. . . 4
| |
| 5 | 4 | exbii 1651 |
. . 3
|
| 6 | 3, 5 | bitri 184 |
. 2
|
| 7 | 19.42v 1953 |
. . 3
| |
| 8 | df-3an 1004 |
. . . 4
| |
| 9 | 8 | exbii 1651 |
. . 3
|
| 10 | df-3an 1004 |
. . 3
| |
| 11 | 7, 9, 10 | 3bitr4ri 213 |
. 2
|
| 12 | 3simpa 1018 |
. . 3
| |
| 13 | id 19 |
. . . 4
| |
| 14 | snexg 4268 |
. . . . . 6
| |
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | prmg 3789 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | 13, 17, 10 | sylanbrc 417 |
. . 3
|
| 19 | 12, 18 | impbii 126 |
. 2
|
| 20 | 6, 11, 19 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opnzi 4321 opeqex 4336 funopsn 5817 cnm 8019 setsfun0 13068 |
| Copyright terms: Public domain | W3C validator |