Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opm | Unicode version |
Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
opm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3585 | . . . . 5 | |
2 | 1 | eleq2i 2233 | . . . 4 |
3 | 2 | exbii 1593 | . . 3 |
4 | abid 2153 | . . . 4 | |
5 | 4 | exbii 1593 | . . 3 |
6 | 3, 5 | bitri 183 | . 2 |
7 | 19.42v 1894 | . . 3 | |
8 | df-3an 970 | . . . 4 | |
9 | 8 | exbii 1593 | . . 3 |
10 | df-3an 970 | . . 3 | |
11 | 7, 9, 10 | 3bitr4ri 212 | . 2 |
12 | 3simpa 984 | . . 3 | |
13 | id 19 | . . . 4 | |
14 | snexg 4163 | . . . . . 6 | |
15 | 14 | adantr 274 | . . . . 5 |
16 | prmg 3697 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | 13, 17, 10 | sylanbrc 414 | . . 3 |
19 | 12, 18 | impbii 125 | . 2 |
20 | 6, 11, 19 | 3bitr2i 207 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 wex 1480 wcel 2136 cab 2151 cvv 2726 csn 3576 cpr 3577 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opnzi 4213 opeqex 4227 cnm 7773 setsfun0 12430 |
Copyright terms: Public domain | W3C validator |