ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs Unicode version

Definition df-recs 6449
Description: Define a function recs ( F
) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6514 for more details on why this definition is desirable. Unlike df-irdg 6514 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6479 and tfri2d 6480 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3  class  F
21crecs 6448 . 2  class recs ( F )
3 vf . . . . . . . 8  setvar  f
43cv 1394 . . . . . . 7  class  f
5 vx . . . . . . . 8  setvar  x
65cv 1394 . . . . . . 7  class  x
74, 6wfn 5312 . . . . . 6  wff  f  Fn  x
8 vy . . . . . . . . . 10  setvar  y
98cv 1394 . . . . . . . . 9  class  y
109, 4cfv 5317 . . . . . . . 8  class  ( f `
 y )
114, 9cres 4720 . . . . . . . . 9  class  ( f  |`  y )
1211, 1cfv 5317 . . . . . . . 8  class  ( F `
 ( f  |`  y ) )
1310, 12wceq 1395 . . . . . . 7  wff  ( f `
 y )  =  ( F `  (
f  |`  y ) )
1413, 8, 6wral 2508 . . . . . 6  wff  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )
157, 14wa 104 . . . . 5  wff  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) )
16 con0 4453 . . . . 5  class  On
1715, 5, 16wrex 2509 . . . 4  wff  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )
1817, 3cab 2215 . . 3  class  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
1918cuni 3887 . 2  class  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
202, 19wceq 1395 1  wff recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  recseq  6450  nfrecs  6451  recsfval  6459  tfrlem9  6463  tfr0dm  6466  tfr1onlemssrecs  6483  tfrcllemssrecs  6496
  Copyright terms: Public domain W3C validator