ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs Unicode version

Definition df-recs 6306
Description: Define a function recs ( F
) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6371 for more details on why this definition is desirable. Unlike df-irdg 6371 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6336 and tfri2d 6337 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3  class  F
21crecs 6305 . 2  class recs ( F )
3 vf . . . . . . . 8  setvar  f
43cv 1352 . . . . . . 7  class  f
5 vx . . . . . . . 8  setvar  x
65cv 1352 . . . . . . 7  class  x
74, 6wfn 5212 . . . . . 6  wff  f  Fn  x
8 vy . . . . . . . . . 10  setvar  y
98cv 1352 . . . . . . . . 9  class  y
109, 4cfv 5217 . . . . . . . 8  class  ( f `
 y )
114, 9cres 4629 . . . . . . . . 9  class  ( f  |`  y )
1211, 1cfv 5217 . . . . . . . 8  class  ( F `
 ( f  |`  y ) )
1310, 12wceq 1353 . . . . . . 7  wff  ( f `
 y )  =  ( F `  (
f  |`  y ) )
1413, 8, 6wral 2455 . . . . . 6  wff  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )
157, 14wa 104 . . . . 5  wff  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) )
16 con0 4364 . . . . 5  class  On
1715, 5, 16wrex 2456 . . . 4  wff  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )
1817, 3cab 2163 . . 3  class  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
1918cuni 3810 . 2  class  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
202, 19wceq 1353 1  wff recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  recseq  6307  nfrecs  6308  recsfval  6316  tfrlem9  6320  tfr0dm  6323  tfr1onlemssrecs  6340  tfrcllemssrecs  6353
  Copyright terms: Public domain W3C validator