ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs Unicode version

Definition df-recs 6273
Description: Define a function recs ( F
) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6338 for more details on why this definition is desirable. Unlike df-irdg 6338 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6303 and tfri2d 6304 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3  class  F
21crecs 6272 . 2  class recs ( F )
3 vf . . . . . . . 8  setvar  f
43cv 1342 . . . . . . 7  class  f
5 vx . . . . . . . 8  setvar  x
65cv 1342 . . . . . . 7  class  x
74, 6wfn 5183 . . . . . 6  wff  f  Fn  x
8 vy . . . . . . . . . 10  setvar  y
98cv 1342 . . . . . . . . 9  class  y
109, 4cfv 5188 . . . . . . . 8  class  ( f `
 y )
114, 9cres 4606 . . . . . . . . 9  class  ( f  |`  y )
1211, 1cfv 5188 . . . . . . . 8  class  ( F `
 ( f  |`  y ) )
1310, 12wceq 1343 . . . . . . 7  wff  ( f `
 y )  =  ( F `  (
f  |`  y ) )
1413, 8, 6wral 2444 . . . . . 6  wff  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )
157, 14wa 103 . . . . 5  wff  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) )
16 con0 4341 . . . . 5  class  On
1715, 5, 16wrex 2445 . . . 4  wff  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )
1817, 3cab 2151 . . 3  class  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
1918cuni 3789 . 2  class  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
202, 19wceq 1343 1  wff recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  recseq  6274  nfrecs  6275  recsfval  6283  tfrlem9  6287  tfr0dm  6290  tfr1onlemssrecs  6307  tfrcllemssrecs  6320
  Copyright terms: Public domain W3C validator