ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs Unicode version

Definition df-recs 6409
Description: Define a function recs ( F
) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6474 for more details on why this definition is desirable. Unlike df-irdg 6474 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6439 and tfri2d 6440 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3  class  F
21crecs 6408 . 2  class recs ( F )
3 vf . . . . . . . 8  setvar  f
43cv 1372 . . . . . . 7  class  f
5 vx . . . . . . . 8  setvar  x
65cv 1372 . . . . . . 7  class  x
74, 6wfn 5280 . . . . . 6  wff  f  Fn  x
8 vy . . . . . . . . . 10  setvar  y
98cv 1372 . . . . . . . . 9  class  y
109, 4cfv 5285 . . . . . . . 8  class  ( f `
 y )
114, 9cres 4690 . . . . . . . . 9  class  ( f  |`  y )
1211, 1cfv 5285 . . . . . . . 8  class  ( F `
 ( f  |`  y ) )
1310, 12wceq 1373 . . . . . . 7  wff  ( f `
 y )  =  ( F `  (
f  |`  y ) )
1413, 8, 6wral 2485 . . . . . 6  wff  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )
157, 14wa 104 . . . . 5  wff  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) )
16 con0 4423 . . . . 5  class  On
1715, 5, 16wrex 2486 . . . 4  wff  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )
1817, 3cab 2192 . . 3  class  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
1918cuni 3859 . 2  class  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
202, 19wceq 1373 1  wff recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  recseq  6410  nfrecs  6411  recsfval  6419  tfrlem9  6423  tfr0dm  6426  tfr1onlemssrecs  6443  tfrcllemssrecs  6456
  Copyright terms: Public domain W3C validator