ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs Unicode version

Definition df-recs 6372
Description: Define a function recs ( F
) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6437 for more details on why this definition is desirable. Unlike df-irdg 6437 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6402 and tfri2d 6403 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3  class  F
21crecs 6371 . 2  class recs ( F )
3 vf . . . . . . . 8  setvar  f
43cv 1363 . . . . . . 7  class  f
5 vx . . . . . . . 8  setvar  x
65cv 1363 . . . . . . 7  class  x
74, 6wfn 5254 . . . . . 6  wff  f  Fn  x
8 vy . . . . . . . . . 10  setvar  y
98cv 1363 . . . . . . . . 9  class  y
109, 4cfv 5259 . . . . . . . 8  class  ( f `
 y )
114, 9cres 4666 . . . . . . . . 9  class  ( f  |`  y )
1211, 1cfv 5259 . . . . . . . 8  class  ( F `
 ( f  |`  y ) )
1310, 12wceq 1364 . . . . . . 7  wff  ( f `
 y )  =  ( F `  (
f  |`  y ) )
1413, 8, 6wral 2475 . . . . . 6  wff  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )
157, 14wa 104 . . . . 5  wff  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) )
16 con0 4399 . . . . 5  class  On
1715, 5, 16wrex 2476 . . . 4  wff  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )
1817, 3cab 2182 . . 3  class  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
1918cuni 3840 . 2  class  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
202, 19wceq 1364 1  wff recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  recseq  6373  nfrecs  6374  recsfval  6382  tfrlem9  6386  tfr0dm  6389  tfr1onlemssrecs  6406  tfrcllemssrecs  6419
  Copyright terms: Public domain W3C validator