ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemssrecs Unicode version

Theorem tfr1onlemssrecs 6425
Description: Lemma for tfr1on 6436. The union of functions acceptable for tfr1on 6436 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
Hypotheses
Ref Expression
tfr1onlemssrecs.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlemssrecs.x  |-  ( ph  ->  Ord  X )
Assertion
Ref Expression
tfr1onlemssrecs  |-  ( ph  ->  U. A  C_ recs ( G ) )
Distinct variable groups:    f, G, x, y    x, X    ph, f
Allowed substitution hints:    ph( x, y)    A( x, y, f)    X( y, f)

Proof of Theorem tfr1onlemssrecs
StepHypRef Expression
1 tfr1onlemssrecs.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
2 tfr1onlemssrecs.x . . . . . 6  |-  ( ph  ->  Ord  X )
3 ordsson 4540 . . . . . 6  |-  ( Ord 
X  ->  X  C_  On )
4 ssrexv 3258 . . . . . 6  |-  ( X 
C_  On  ->  ( E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) )  ->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) )
52, 3, 43syl 17 . . . . 5  |-  ( ph  ->  ( E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  ->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) )
65ss2abdv 3266 . . . 4  |-  ( ph  ->  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) } 
C_  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) } )
71, 6eqsstrid 3239 . . 3  |-  ( ph  ->  A  C_  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) } )
87unissd 3874 . 2  |-  ( ph  ->  U. A  C_  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) } )
9 df-recs 6391 . 2  |- recs ( G )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
108, 9sseqtrrdi 3242 1  |-  ( ph  ->  U. A  C_ recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   {cab 2191   A.wral 2484   E.wrex 2485    C_ wss 3166   U.cuni 3850   Ord word 4409   Oncon0 4410    |` cres 4677    Fn wfn 5266   ` cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-recs 6391
This theorem is referenced by:  tfr1onlembfn  6430  tfr1onlemubacc  6432  tfr1onlemres  6435
  Copyright terms: Public domain W3C validator