ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d Unicode version

Theorem tfri2d 6233
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6262). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri2d  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6  |-  F  = recs ( G )
2 tfri1d.2 . . . . . 6  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
31, 2tfri1d 6232 . . . . 5  |-  ( ph  ->  F  Fn  On )
4 fndm 5222 . . . . 5  |-  ( F  Fn  On  ->  dom  F  =  On )
53, 4syl 14 . . . 4  |-  ( ph  ->  dom  F  =  On )
65eleq2d 2209 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
A  e.  On ) )
76biimpar 295 . 2  |-  ( (
ph  /\  A  e.  On )  ->  A  e. 
dom  F )
81tfr2a 6218 . 2  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
97, 8syl 14 1  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   _Vcvv 2686   Oncon0 4285   dom cdm 4539    |` cres 4541   Fun wfun 5117    Fn wfn 5118   ` cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202
This theorem is referenced by:  rdgivallem  6278
  Copyright terms: Public domain W3C validator