ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d Unicode version

Theorem tfri2d 6421
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6450). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri2d  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6  |-  F  = recs ( G )
2 tfri1d.2 . . . . . 6  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
31, 2tfri1d 6420 . . . . 5  |-  ( ph  ->  F  Fn  On )
4 fndm 5372 . . . . 5  |-  ( F  Fn  On  ->  dom  F  =  On )
53, 4syl 14 . . . 4  |-  ( ph  ->  dom  F  =  On )
65eleq2d 2274 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
A  e.  On ) )
76biimpar 297 . 2  |-  ( (
ph  /\  A  e.  On )  ->  A  e. 
dom  F )
81tfr2a 6406 . 2  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
97, 8syl 14 1  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1370    = wceq 1372    e. wcel 2175   _Vcvv 2771   Oncon0 4409   dom cdm 4674    |` cres 4676   Fun wfun 5264    Fn wfn 5265   ` cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-recs 6390
This theorem is referenced by:  rdgivallem  6466
  Copyright terms: Public domain W3C validator