ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d Unicode version

Theorem tfri2d 6355
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6384). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri2d  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6  |-  F  = recs ( G )
2 tfri1d.2 . . . . . 6  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
31, 2tfri1d 6354 . . . . 5  |-  ( ph  ->  F  Fn  On )
4 fndm 5330 . . . . 5  |-  ( F  Fn  On  ->  dom  F  =  On )
53, 4syl 14 . . . 4  |-  ( ph  ->  dom  F  =  On )
65eleq2d 2259 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
A  e.  On ) )
76biimpar 297 . 2  |-  ( (
ph  /\  A  e.  On )  ->  A  e. 
dom  F )
81tfr2a 6340 . 2  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
97, 8syl 14 1  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2160   _Vcvv 2752   Oncon0 4378   dom cdm 4641    |` cres 4643   Fun wfun 5225    Fn wfn 5226   ` cfv 5231  recscrecs 6323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-recs 6324
This theorem is referenced by:  rdgivallem  6400
  Copyright terms: Public domain W3C validator