ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d Unicode version

Theorem tfri2d 6394
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6423). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri2d  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6  |-  F  = recs ( G )
2 tfri1d.2 . . . . . 6  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
31, 2tfri1d 6393 . . . . 5  |-  ( ph  ->  F  Fn  On )
4 fndm 5357 . . . . 5  |-  ( F  Fn  On  ->  dom  F  =  On )
53, 4syl 14 . . . 4  |-  ( ph  ->  dom  F  =  On )
65eleq2d 2266 . . 3  |-  ( ph  ->  ( A  e.  dom  F  <-> 
A  e.  On ) )
76biimpar 297 . 2  |-  ( (
ph  /\  A  e.  On )  ->  A  e. 
dom  F )
81tfr2a 6379 . 2  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
97, 8syl 14 1  |-  ( (
ph  /\  A  e.  On )  ->  ( F `
 A )  =  ( G `  ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2167   _Vcvv 2763   Oncon0 4398   dom cdm 4663    |` cres 4665   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363
This theorem is referenced by:  rdgivallem  6439
  Copyright terms: Public domain W3C validator