ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrecs Unicode version

Theorem nfrecs 6322
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f  |-  F/_ x F
Assertion
Ref Expression
nfrecs  |-  F/_ xrecs ( F )

Proof of Theorem nfrecs
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-recs 6320 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
2 nfcv 2329 . . . . 5  |-  F/_ x On
3 nfv 1538 . . . . . 6  |-  F/ x  a  Fn  b
4 nfcv 2329 . . . . . . 7  |-  F/_ x
b
5 nfrecs.f . . . . . . . . 9  |-  F/_ x F
6 nfcv 2329 . . . . . . . . 9  |-  F/_ x
( a  |`  c
)
75, 6nffv 5537 . . . . . . . 8  |-  F/_ x
( F `  (
a  |`  c ) )
87nfeq2 2341 . . . . . . 7  |-  F/ x
( a `  c
)  =  ( F `
 ( a  |`  c ) )
94, 8nfralxy 2525 . . . . . 6  |-  F/ x A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )
103, 9nfan 1575 . . . . 5  |-  F/ x
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
112, 10nfrexxy 2526 . . . 4  |-  F/ x E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
1211nfab 2334 . . 3  |-  F/_ x { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
1312nfuni 3827 . 2  |-  F/_ x U. { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
141, 13nfcxfr 2326 1  |-  F/_ xrecs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1363   {cab 2173   F/_wnfc 2316   A.wral 2465   E.wrex 2466   U.cuni 3821   Oncon0 4375    |` cres 4640    Fn wfn 5223   ` cfv 5228  recscrecs 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-recs 6320
This theorem is referenced by:  nffrec  6411
  Copyright terms: Public domain W3C validator