ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrecs Unicode version

Theorem nfrecs 6251
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f  |-  F/_ x F
Assertion
Ref Expression
nfrecs  |-  F/_ xrecs ( F )

Proof of Theorem nfrecs
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-recs 6249 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
2 nfcv 2299 . . . . 5  |-  F/_ x On
3 nfv 1508 . . . . . 6  |-  F/ x  a  Fn  b
4 nfcv 2299 . . . . . . 7  |-  F/_ x
b
5 nfrecs.f . . . . . . . . 9  |-  F/_ x F
6 nfcv 2299 . . . . . . . . 9  |-  F/_ x
( a  |`  c
)
75, 6nffv 5477 . . . . . . . 8  |-  F/_ x
( F `  (
a  |`  c ) )
87nfeq2 2311 . . . . . . 7  |-  F/ x
( a `  c
)  =  ( F `
 ( a  |`  c ) )
94, 8nfralxy 2495 . . . . . 6  |-  F/ x A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )
103, 9nfan 1545 . . . . 5  |-  F/ x
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
112, 10nfrexxy 2496 . . . 4  |-  F/ x E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
1211nfab 2304 . . 3  |-  F/_ x { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
1312nfuni 3778 . 2  |-  F/_ x U. { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
141, 13nfcxfr 2296 1  |-  F/_ xrecs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335   {cab 2143   F/_wnfc 2286   A.wral 2435   E.wrex 2436   U.cuni 3772   Oncon0 4323    |` cres 4587    Fn wfn 5164   ` cfv 5169  recscrecs 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5134  df-fv 5177  df-recs 6249
This theorem is referenced by:  nffrec  6340
  Copyright terms: Public domain W3C validator