ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrecs Unicode version

Theorem nfrecs 6360
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f  |-  F/_ x F
Assertion
Ref Expression
nfrecs  |-  F/_ xrecs ( F )

Proof of Theorem nfrecs
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-recs 6358 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
2 nfcv 2336 . . . . 5  |-  F/_ x On
3 nfv 1539 . . . . . 6  |-  F/ x  a  Fn  b
4 nfcv 2336 . . . . . . 7  |-  F/_ x
b
5 nfrecs.f . . . . . . . . 9  |-  F/_ x F
6 nfcv 2336 . . . . . . . . 9  |-  F/_ x
( a  |`  c
)
75, 6nffv 5564 . . . . . . . 8  |-  F/_ x
( F `  (
a  |`  c ) )
87nfeq2 2348 . . . . . . 7  |-  F/ x
( a `  c
)  =  ( F `
 ( a  |`  c ) )
94, 8nfralxy 2532 . . . . . 6  |-  F/ x A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )
103, 9nfan 1576 . . . . 5  |-  F/ x
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
112, 10nfrexw 2533 . . . 4  |-  F/ x E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
1211nfab 2341 . . 3  |-  F/_ x { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
1312nfuni 3841 . 2  |-  F/_ x U. { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
141, 13nfcxfr 2333 1  |-  F/_ xrecs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   {cab 2179   F/_wnfc 2323   A.wral 2472   E.wrex 2473   U.cuni 3835   Oncon0 4394    |` cres 4661    Fn wfn 5249   ` cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-recs 6358
This theorem is referenced by:  nffrec  6449
  Copyright terms: Public domain W3C validator