ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs GIF version

Definition df-recs 6398
Description: Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-irdg 6463 for more details on why this definition is desirable. Unlike df-irdg 6463 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6428 and tfri2d 6429 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3 class 𝐹
21crecs 6397 . 2 class recs(𝐹)
3 vf . . . . . . . 8 setvar 𝑓
43cv 1372 . . . . . . 7 class 𝑓
5 vx . . . . . . . 8 setvar 𝑥
65cv 1372 . . . . . . 7 class 𝑥
74, 6wfn 5271 . . . . . 6 wff 𝑓 Fn 𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1372 . . . . . . . . 9 class 𝑦
109, 4cfv 5276 . . . . . . . 8 class (𝑓𝑦)
114, 9cres 4681 . . . . . . . . 9 class (𝑓𝑦)
1211, 1cfv 5276 . . . . . . . 8 class (𝐹‘(𝑓𝑦))
1310, 12wceq 1373 . . . . . . 7 wff (𝑓𝑦) = (𝐹‘(𝑓𝑦))
1413, 8, 6wral 2485 . . . . . 6 wff 𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))
157, 14wa 104 . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
16 con0 4414 . . . . 5 class On
1715, 5, 16wrex 2486 . . . 4 wff 𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
1817, 3cab 2192 . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918cuni 3852 . 2 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
202, 19wceq 1373 1 wff recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff set class
This definition is referenced by:  recseq  6399  nfrecs  6400  recsfval  6408  tfrlem9  6412  tfr0dm  6415  tfr1onlemssrecs  6432  tfrcllemssrecs  6445
  Copyright terms: Public domain W3C validator