![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-recs | GIF version |
Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6423 for more details on why
this definition is desirable. Unlike df-irdg 6423 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6388 and
tfri2d 6389 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | crecs 6357 | . 2 class recs(𝐹) |
3 | vf | . . . . . . . 8 setvar 𝑓 | |
4 | 3 | cv 1363 | . . . . . . 7 class 𝑓 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1363 | . . . . . . 7 class 𝑥 |
7 | 4, 6 | wfn 5249 | . . . . . 6 wff 𝑓 Fn 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1363 | . . . . . . . . 9 class 𝑦 |
10 | 9, 4 | cfv 5254 | . . . . . . . 8 class (𝑓‘𝑦) |
11 | 4, 9 | cres 4661 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
12 | 11, 1 | cfv 5254 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
13 | 10, 12 | wceq 1364 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
14 | 13, 8, 6 | wral 2472 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
16 | con0 4394 | . . . . 5 class On | |
17 | 15, 5, 16 | wrex 2473 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
18 | 17, 3 | cab 2179 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | cuni 3835 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
20 | 2, 19 | wceq 1364 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Colors of variables: wff set class |
This definition is referenced by: recseq 6359 nfrecs 6360 recsfval 6368 tfrlem9 6372 tfr0dm 6375 tfr1onlemssrecs 6392 tfrcllemssrecs 6405 |
Copyright terms: Public domain | W3C validator |