| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-recs | GIF version | ||
| Description: Define a function recs(𝐹)
on On, the class of ordinal
       numbers, by transfinite recursion given a rule 𝐹 which sets the next
       value given all values so far.  See df-irdg 6428 for more details on why
       this definition is desirable.  Unlike df-irdg 6428 which restricts the
       update rule to use only the previous value, this version allows the
       update rule to use all previous values, which is why it is
described
       as "strong", although it is actually more primitive.  See tfri1d 6393 and
       tfri2d 6394 for the primary contract of this definition.
 (Contributed by Stefan O'Rear, 18-Jan-2015.)  | 
| Ref | Expression | 
|---|---|
| df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | crecs 6362 | . 2 class recs(𝐹) | 
| 3 | vf | . . . . . . . 8 setvar 𝑓 | |
| 4 | 3 | cv 1363 | . . . . . . 7 class 𝑓 | 
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . . 7 class 𝑥 | 
| 7 | 4, 6 | wfn 5253 | . . . . . 6 wff 𝑓 Fn 𝑥 | 
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1363 | . . . . . . . . 9 class 𝑦 | 
| 10 | 9, 4 | cfv 5258 | . . . . . . . 8 class (𝑓‘𝑦) | 
| 11 | 4, 9 | cres 4665 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) | 
| 12 | 11, 1 | cfv 5258 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) | 
| 13 | 10, 12 | wceq 1364 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) | 
| 14 | 13, 8, 6 | wral 2475 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) | 
| 15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) | 
| 16 | con0 4398 | . . . . 5 class On | |
| 17 | 15, 5, 16 | wrex 2476 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) | 
| 18 | 17, 3 | cab 2182 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| 19 | 18 | cuni 3839 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| 20 | 2, 19 | wceq 1364 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | 
| Colors of variables: wff set class | 
| This definition is referenced by: recseq 6364 nfrecs 6365 recsfval 6373 tfrlem9 6377 tfr0dm 6380 tfr1onlemssrecs 6397 tfrcllemssrecs 6410 | 
| Copyright terms: Public domain | W3C validator |