| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-recs | GIF version | ||
| Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6486 for more details on why
this definition is desirable. Unlike df-irdg 6486 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6451 and
tfri2d 6452 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | crecs 6420 | . 2 class recs(𝐹) |
| 3 | vf | . . . . . . . 8 setvar 𝑓 | |
| 4 | 3 | cv 1374 | . . . . . . 7 class 𝑓 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1374 | . . . . . . 7 class 𝑥 |
| 7 | 4, 6 | wfn 5289 | . . . . . 6 wff 𝑓 Fn 𝑥 |
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1374 | . . . . . . . . 9 class 𝑦 |
| 10 | 9, 4 | cfv 5294 | . . . . . . . 8 class (𝑓‘𝑦) |
| 11 | 4, 9 | cres 4698 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
| 12 | 11, 1 | cfv 5294 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
| 13 | 10, 12 | wceq 1375 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 14 | 13, 8, 6 | wral 2488 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 16 | con0 4431 | . . . . 5 class On | |
| 17 | 15, 5, 16 | wrex 2489 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 18 | 17, 3 | cab 2195 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 19 | 18 | cuni 3867 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 20 | 2, 19 | wceq 1375 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Colors of variables: wff set class |
| This definition is referenced by: recseq 6422 nfrecs 6423 recsfval 6431 tfrlem9 6435 tfr0dm 6438 tfr1onlemssrecs 6455 tfrcllemssrecs 6468 |
| Copyright terms: Public domain | W3C validator |