![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-recs | GIF version |
Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6373 for more details on why
this definition is desirable. Unlike df-irdg 6373 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6338 and
tfri2d 6339 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | crecs 6307 | . 2 class recs(𝐹) |
3 | vf | . . . . . . . 8 setvar 𝑓 | |
4 | 3 | cv 1352 | . . . . . . 7 class 𝑓 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1352 | . . . . . . 7 class 𝑥 |
7 | 4, 6 | wfn 5213 | . . . . . 6 wff 𝑓 Fn 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1352 | . . . . . . . . 9 class 𝑦 |
10 | 9, 4 | cfv 5218 | . . . . . . . 8 class (𝑓‘𝑦) |
11 | 4, 9 | cres 4630 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
12 | 11, 1 | cfv 5218 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
13 | 10, 12 | wceq 1353 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
14 | 13, 8, 6 | wral 2455 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
16 | con0 4365 | . . . . 5 class On | |
17 | 15, 5, 16 | wrex 2456 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
18 | 17, 3 | cab 2163 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | cuni 3811 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
20 | 2, 19 | wceq 1353 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Colors of variables: wff set class |
This definition is referenced by: recseq 6309 nfrecs 6310 recsfval 6318 tfrlem9 6322 tfr0dm 6325 tfr1onlemssrecs 6342 tfrcllemssrecs 6355 |
Copyright terms: Public domain | W3C validator |