ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs GIF version

Definition df-recs 6421
Description: Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-irdg 6486 for more details on why this definition is desirable. Unlike df-irdg 6486 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6451 and tfri2d 6452 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3 class 𝐹
21crecs 6420 . 2 class recs(𝐹)
3 vf . . . . . . . 8 setvar 𝑓
43cv 1374 . . . . . . 7 class 𝑓
5 vx . . . . . . . 8 setvar 𝑥
65cv 1374 . . . . . . 7 class 𝑥
74, 6wfn 5289 . . . . . 6 wff 𝑓 Fn 𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1374 . . . . . . . . 9 class 𝑦
109, 4cfv 5294 . . . . . . . 8 class (𝑓𝑦)
114, 9cres 4698 . . . . . . . . 9 class (𝑓𝑦)
1211, 1cfv 5294 . . . . . . . 8 class (𝐹‘(𝑓𝑦))
1310, 12wceq 1375 . . . . . . 7 wff (𝑓𝑦) = (𝐹‘(𝑓𝑦))
1413, 8, 6wral 2488 . . . . . 6 wff 𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))
157, 14wa 104 . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
16 con0 4431 . . . . 5 class On
1715, 5, 16wrex 2489 . . . 4 wff 𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
1817, 3cab 2195 . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918cuni 3867 . 2 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
202, 19wceq 1375 1 wff recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff set class
This definition is referenced by:  recseq  6422  nfrecs  6423  recsfval  6431  tfrlem9  6435  tfr0dm  6438  tfr1onlemssrecs  6455  tfrcllemssrecs  6468
  Copyright terms: Public domain W3C validator