![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-recs | GIF version |
Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6425 for more details on why
this definition is desirable. Unlike df-irdg 6425 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6390 and
tfri2d 6391 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | crecs 6359 | . 2 class recs(𝐹) |
3 | vf | . . . . . . . 8 setvar 𝑓 | |
4 | 3 | cv 1363 | . . . . . . 7 class 𝑓 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1363 | . . . . . . 7 class 𝑥 |
7 | 4, 6 | wfn 5250 | . . . . . 6 wff 𝑓 Fn 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1363 | . . . . . . . . 9 class 𝑦 |
10 | 9, 4 | cfv 5255 | . . . . . . . 8 class (𝑓‘𝑦) |
11 | 4, 9 | cres 4662 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
12 | 11, 1 | cfv 5255 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
13 | 10, 12 | wceq 1364 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
14 | 13, 8, 6 | wral 2472 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
16 | con0 4395 | . . . . 5 class On | |
17 | 15, 5, 16 | wrex 2473 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
18 | 17, 3 | cab 2179 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | cuni 3836 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
20 | 2, 19 | wceq 1364 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Colors of variables: wff set class |
This definition is referenced by: recseq 6361 nfrecs 6362 recsfval 6370 tfrlem9 6374 tfr0dm 6377 tfr1onlemssrecs 6394 tfrcllemssrecs 6407 |
Copyright terms: Public domain | W3C validator |