ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs GIF version

Definition df-recs 6308
Description: Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-irdg 6373 for more details on why this definition is desirable. Unlike df-irdg 6373 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6338 and tfri2d 6339 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3 class 𝐹
21crecs 6307 . 2 class recs(𝐹)
3 vf . . . . . . . 8 setvar 𝑓
43cv 1352 . . . . . . 7 class 𝑓
5 vx . . . . . . . 8 setvar 𝑥
65cv 1352 . . . . . . 7 class 𝑥
74, 6wfn 5213 . . . . . 6 wff 𝑓 Fn 𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1352 . . . . . . . . 9 class 𝑦
109, 4cfv 5218 . . . . . . . 8 class (𝑓𝑦)
114, 9cres 4630 . . . . . . . . 9 class (𝑓𝑦)
1211, 1cfv 5218 . . . . . . . 8 class (𝐹‘(𝑓𝑦))
1310, 12wceq 1353 . . . . . . 7 wff (𝑓𝑦) = (𝐹‘(𝑓𝑦))
1413, 8, 6wral 2455 . . . . . 6 wff 𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))
157, 14wa 104 . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
16 con0 4365 . . . . 5 class On
1715, 5, 16wrex 2456 . . . 4 wff 𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
1817, 3cab 2163 . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918cuni 3811 . 2 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
202, 19wceq 1353 1 wff recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff set class
This definition is referenced by:  recseq  6309  nfrecs  6310  recsfval  6318  tfrlem9  6322  tfr0dm  6325  tfr1onlemssrecs  6342  tfrcllemssrecs  6355
  Copyright terms: Public domain W3C validator