Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-recs | GIF version |
Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6334 for more details on why
this definition is desirable. Unlike df-irdg 6334 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6299 and
tfri2d 6300 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | crecs 6268 | . 2 class recs(𝐹) |
3 | vf | . . . . . . . 8 setvar 𝑓 | |
4 | 3 | cv 1342 | . . . . . . 7 class 𝑓 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1342 | . . . . . . 7 class 𝑥 |
7 | 4, 6 | wfn 5182 | . . . . . 6 wff 𝑓 Fn 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1342 | . . . . . . . . 9 class 𝑦 |
10 | 9, 4 | cfv 5187 | . . . . . . . 8 class (𝑓‘𝑦) |
11 | 4, 9 | cres 4605 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
12 | 11, 1 | cfv 5187 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
13 | 10, 12 | wceq 1343 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
14 | 13, 8, 6 | wral 2443 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
15 | 7, 14 | wa 103 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
16 | con0 4340 | . . . . 5 class On | |
17 | 15, 5, 16 | wrex 2444 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
18 | 17, 3 | cab 2151 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | cuni 3788 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
20 | 2, 19 | wceq 1343 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Colors of variables: wff set class |
This definition is referenced by: recseq 6270 nfrecs 6271 recsfval 6279 tfrlem9 6283 tfr0dm 6286 tfr1onlemssrecs 6303 tfrcllemssrecs 6316 |
Copyright terms: Public domain | W3C validator |