![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-recs | GIF version |
Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6370 for more details on why
this definition is desirable. Unlike df-irdg 6370 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6335 and
tfri2d 6336 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | 1 | crecs 6304 | . 2 class recs(𝐹) |
3 | vf | . . . . . . . 8 setvar 𝑓 | |
4 | 3 | cv 1352 | . . . . . . 7 class 𝑓 |
5 | vx | . . . . . . . 8 setvar 𝑥 | |
6 | 5 | cv 1352 | . . . . . . 7 class 𝑥 |
7 | 4, 6 | wfn 5211 | . . . . . 6 wff 𝑓 Fn 𝑥 |
8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
9 | 8 | cv 1352 | . . . . . . . . 9 class 𝑦 |
10 | 9, 4 | cfv 5216 | . . . . . . . 8 class (𝑓‘𝑦) |
11 | 4, 9 | cres 4628 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
12 | 11, 1 | cfv 5216 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
13 | 10, 12 | wceq 1353 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
14 | 13, 8, 6 | wral 2455 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
16 | con0 4363 | . . . . 5 class On | |
17 | 15, 5, 16 | wrex 2456 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
18 | 17, 3 | cab 2163 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
19 | 18 | cuni 3809 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
20 | 2, 19 | wceq 1353 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Colors of variables: wff set class |
This definition is referenced by: recseq 6306 nfrecs 6307 recsfval 6315 tfrlem9 6319 tfr0dm 6322 tfr1onlemssrecs 6339 tfrcllemssrecs 6352 |
Copyright terms: Public domain | W3C validator |