| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-recs | GIF version | ||
| Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6522 for more details on why
this definition is desirable. Unlike df-irdg 6522 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6487 and
tfri2d 6488 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | crecs 6456 | . 2 class recs(𝐹) |
| 3 | vf | . . . . . . . 8 setvar 𝑓 | |
| 4 | 3 | cv 1394 | . . . . . . 7 class 𝑓 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1394 | . . . . . . 7 class 𝑥 |
| 7 | 4, 6 | wfn 5313 | . . . . . 6 wff 𝑓 Fn 𝑥 |
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1394 | . . . . . . . . 9 class 𝑦 |
| 10 | 9, 4 | cfv 5318 | . . . . . . . 8 class (𝑓‘𝑦) |
| 11 | 4, 9 | cres 4721 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
| 12 | 11, 1 | cfv 5318 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
| 13 | 10, 12 | wceq 1395 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 14 | 13, 8, 6 | wral 2508 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 16 | con0 4454 | . . . . 5 class On | |
| 17 | 15, 5, 16 | wrex 2509 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 18 | 17, 3 | cab 2215 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 19 | 18 | cuni 3888 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 20 | 2, 19 | wceq 1395 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Colors of variables: wff set class |
| This definition is referenced by: recseq 6458 nfrecs 6459 recsfval 6467 tfrlem9 6471 tfr0dm 6474 tfr1onlemssrecs 6491 tfrcllemssrecs 6504 |
| Copyright terms: Public domain | W3C validator |