| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-recs | GIF version | ||
| Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6437 for more details on why
this definition is desirable. Unlike df-irdg 6437 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6402 and
tfri2d 6403 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | crecs 6371 | . 2 class recs(𝐹) |
| 3 | vf | . . . . . . . 8 setvar 𝑓 | |
| 4 | 3 | cv 1363 | . . . . . . 7 class 𝑓 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . . 7 class 𝑥 |
| 7 | 4, 6 | wfn 5254 | . . . . . 6 wff 𝑓 Fn 𝑥 |
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1363 | . . . . . . . . 9 class 𝑦 |
| 10 | 9, 4 | cfv 5259 | . . . . . . . 8 class (𝑓‘𝑦) |
| 11 | 4, 9 | cres 4666 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
| 12 | 11, 1 | cfv 5259 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
| 13 | 10, 12 | wceq 1364 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 14 | 13, 8, 6 | wral 2475 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 16 | con0 4399 | . . . . 5 class On | |
| 17 | 15, 5, 16 | wrex 2476 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 18 | 17, 3 | cab 2182 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 19 | 18 | cuni 3840 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 20 | 2, 19 | wceq 1364 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Colors of variables: wff set class |
| This definition is referenced by: recseq 6373 nfrecs 6374 recsfval 6382 tfrlem9 6386 tfr0dm 6389 tfr1onlemssrecs 6406 tfrcllemssrecs 6419 |
| Copyright terms: Public domain | W3C validator |