| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-recs | GIF version | ||
| Description: Define a function recs(𝐹)
on On, the class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6463 for more details on why
this definition is desirable. Unlike df-irdg 6463 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6428 and
tfri2d 6429 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-recs | ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | crecs 6397 | . 2 class recs(𝐹) |
| 3 | vf | . . . . . . . 8 setvar 𝑓 | |
| 4 | 3 | cv 1372 | . . . . . . 7 class 𝑓 |
| 5 | vx | . . . . . . . 8 setvar 𝑥 | |
| 6 | 5 | cv 1372 | . . . . . . 7 class 𝑥 |
| 7 | 4, 6 | wfn 5271 | . . . . . 6 wff 𝑓 Fn 𝑥 |
| 8 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 9 | 8 | cv 1372 | . . . . . . . . 9 class 𝑦 |
| 10 | 9, 4 | cfv 5276 | . . . . . . . 8 class (𝑓‘𝑦) |
| 11 | 4, 9 | cres 4681 | . . . . . . . . 9 class (𝑓 ↾ 𝑦) |
| 12 | 11, 1 | cfv 5276 | . . . . . . . 8 class (𝐹‘(𝑓 ↾ 𝑦)) |
| 13 | 10, 12 | wceq 1373 | . . . . . . 7 wff (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 14 | 13, 8, 6 | wral 2485 | . . . . . 6 wff ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) |
| 15 | 7, 14 | wa 104 | . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 16 | con0 4414 | . . . . 5 class On | |
| 17 | 15, 5, 16 | wrex 2486 | . . . 4 wff ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
| 18 | 17, 3 | cab 2192 | . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 19 | 18 | cuni 3852 | . 2 class ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 20 | 2, 19 | wceq 1373 | 1 wff recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Colors of variables: wff set class |
| This definition is referenced by: recseq 6399 nfrecs 6400 recsfval 6408 tfrlem9 6412 tfr0dm 6415 tfr1onlemssrecs 6432 tfrcllemssrecs 6445 |
| Copyright terms: Public domain | W3C validator |