ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-recs GIF version

Definition df-recs 6358
Description: Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-irdg 6423 for more details on why this definition is desirable. Unlike df-irdg 6423 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6388 and tfri2d 6389 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

Assertion
Ref Expression
df-recs recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Detailed syntax breakdown of Definition df-recs
StepHypRef Expression
1 cF . . 3 class 𝐹
21crecs 6357 . 2 class recs(𝐹)
3 vf . . . . . . . 8 setvar 𝑓
43cv 1363 . . . . . . 7 class 𝑓
5 vx . . . . . . . 8 setvar 𝑥
65cv 1363 . . . . . . 7 class 𝑥
74, 6wfn 5249 . . . . . 6 wff 𝑓 Fn 𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1363 . . . . . . . . 9 class 𝑦
109, 4cfv 5254 . . . . . . . 8 class (𝑓𝑦)
114, 9cres 4661 . . . . . . . . 9 class (𝑓𝑦)
1211, 1cfv 5254 . . . . . . . 8 class (𝐹‘(𝑓𝑦))
1310, 12wceq 1364 . . . . . . 7 wff (𝑓𝑦) = (𝐹‘(𝑓𝑦))
1413, 8, 6wral 2472 . . . . . 6 wff 𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))
157, 14wa 104 . . . . 5 wff (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
16 con0 4394 . . . . 5 class On
1715, 5, 16wrex 2473 . . . 4 wff 𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
1817, 3cab 2179 . . 3 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1918cuni 3835 . 2 class {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
202, 19wceq 1364 1 wff recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff set class
This definition is referenced by:  recseq  6359  nfrecs  6360  recsfval  6368  tfrlem9  6372  tfr0dm  6375  tfr1onlemssrecs  6392  tfrcllemssrecs  6405
  Copyright terms: Public domain W3C validator