| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recseq | Unicode version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5625 |
. . . . . . . 8
| |
| 2 | 1 | eqeq2d 2241 |
. . . . . . 7
|
| 3 | 2 | ralbidv 2530 |
. . . . . 6
|
| 4 | 3 | anbi2d 464 |
. . . . 5
|
| 5 | 4 | rexbidv 2531 |
. . . 4
|
| 6 | 5 | abbidv 2347 |
. . 3
|
| 7 | 6 | unieqd 3898 |
. 2
|
| 8 | df-recs 6449 |
. 2
| |
| 9 | df-recs 6449 |
. 2
| |
| 10 | 7, 8, 9 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-recs 6449 |
| This theorem is referenced by: rdgeq1 6515 rdgeq2 6516 freceq1 6536 freceq2 6537 frecsuclem 6550 |
| Copyright terms: Public domain | W3C validator |