ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recseq Unicode version

Theorem recseq 6274
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )

Proof of Theorem recseq
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5485 . . . . . . . 8  |-  ( F  =  G  ->  ( F `  ( a  |`  c ) )  =  ( G `  (
a  |`  c ) ) )
21eqeq2d 2177 . . . . . . 7  |-  ( F  =  G  ->  (
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
32ralbidv 2466 . . . . . 6  |-  ( F  =  G  ->  ( A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
43anbi2d 460 . . . . 5  |-  ( F  =  G  ->  (
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <-> 
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
54rexbidv 2467 . . . 4  |-  ( F  =  G  ->  ( E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <->  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
65abbidv 2284 . . 3  |-  ( F  =  G  ->  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
76unieqd 3800 . 2  |-  ( F  =  G  ->  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
8 df-recs 6273 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
9 df-recs 6273 . 2  |- recs ( G )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
107, 8, 93eqtr4g 2224 1  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   {cab 2151   A.wral 2444   E.wrex 2445   U.cuni 3789   Oncon0 4341    |` cres 4606    Fn wfn 5183   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-recs 6273
This theorem is referenced by:  rdgeq1  6339  rdgeq2  6340  freceq1  6360  freceq2  6361  frecsuclem  6374
  Copyright terms: Public domain W3C validator