| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recseq | Unicode version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5588 |
. . . . . . . 8
| |
| 2 | 1 | eqeq2d 2218 |
. . . . . . 7
|
| 3 | 2 | ralbidv 2507 |
. . . . . 6
|
| 4 | 3 | anbi2d 464 |
. . . . 5
|
| 5 | 4 | rexbidv 2508 |
. . . 4
|
| 6 | 5 | abbidv 2324 |
. . 3
|
| 7 | 6 | unieqd 3867 |
. 2
|
| 8 | df-recs 6404 |
. 2
| |
| 9 | df-recs 6404 |
. 2
| |
| 10 | 7, 8, 9 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-recs 6404 |
| This theorem is referenced by: rdgeq1 6470 rdgeq2 6471 freceq1 6491 freceq2 6492 frecsuclem 6505 |
| Copyright terms: Public domain | W3C validator |