ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recseq Unicode version

Theorem recseq 6321
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )

Proof of Theorem recseq
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5526 . . . . . . . 8  |-  ( F  =  G  ->  ( F `  ( a  |`  c ) )  =  ( G `  (
a  |`  c ) ) )
21eqeq2d 2199 . . . . . . 7  |-  ( F  =  G  ->  (
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
32ralbidv 2487 . . . . . 6  |-  ( F  =  G  ->  ( A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
43anbi2d 464 . . . . 5  |-  ( F  =  G  ->  (
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <-> 
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
54rexbidv 2488 . . . 4  |-  ( F  =  G  ->  ( E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <->  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
65abbidv 2305 . . 3  |-  ( F  =  G  ->  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
76unieqd 3832 . 2  |-  ( F  =  G  ->  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
8 df-recs 6320 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
9 df-recs 6320 . 2  |- recs ( G )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
107, 8, 93eqtr4g 2245 1  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   {cab 2173   A.wral 2465   E.wrex 2466   U.cuni 3821   Oncon0 4375    |` cres 4640    Fn wfn 5223   ` cfv 5228  recscrecs 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-recs 6320
This theorem is referenced by:  rdgeq1  6386  rdgeq2  6387  freceq1  6407  freceq2  6408  frecsuclem  6421
  Copyright terms: Public domain W3C validator