ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0dm Unicode version

Theorem tfr0dm 6380
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0dm  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )

Proof of Theorem tfr0dm
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4160 . . . . 5  |-  (/)  e.  _V
2 opexg 4261 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
31, 2mpan 424 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
4 snidg 3651 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  -> 
<. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } )
53, 4syl 14 . . 3  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. } )
6 fnsng 5305 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  { <. (/)
,  ( G `  (/) ) >. }  Fn  { (/)
} )
71, 6mpan 424 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) } )
8 fvsng 5758 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
91, 8mpan 424 . . . . . 6  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
10 res0 4950 . . . . . . 7  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) )  =  (/)
1110fveq2i 5561 . . . . . 6  |-  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) )  =  ( G `  (/) )
129, 11eqtr4di 2247 . . . . 5  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
13 fveq2 5558 . . . . . . 7  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) ) )
14 reseq2 4941 . . . . . . . 8  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) )
1514fveq2d 5562 . . . . . . 7  |-  ( y  =  (/)  ->  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) ) )
1613, 15eqeq12d 2211 . . . . . 6  |-  ( y  =  (/)  ->  ( ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) ) )
171, 16ralsn 3665 . . . . 5  |-  ( A. y  e.  { (/) }  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
1812, 17sylibr 134 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
19 suc0 4446 . . . . . 6  |-  suc  (/)  =  { (/)
}
20 0elon 4427 . . . . . . 7  |-  (/)  e.  On
2120onsuci 4552 . . . . . 6  |-  suc  (/)  e.  On
2219, 21eqeltrri 2270 . . . . 5  |-  { (/) }  e.  On
23 fneq2 5347 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x 
<->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) } ) )
24 raleq 2693 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
2523, 24anbi12d 473 . . . . . 6  |-  ( x  =  { (/) }  ->  ( ( { <. (/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) ) )
2625rspcev 2868 . . . . 5  |-  ( ( { (/) }  e.  On  /\  ( { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) }  /\  A. y  e.  { (/) }  ( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
2722, 26mpan 424 . . . 4  |-  ( ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
287, 18, 27syl2anc 411 . . 3  |-  ( ( G `  (/) )  e.  V  ->  E. x  e.  On  ( { <. (/)
,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
29 snexg 4217 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  ->  { <. (/) ,  ( G `
 (/) ) >. }  e.  _V )
30 eleq2 2260 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( <. (/) ,  ( G `  (/) ) >.  e.  f  <->  <. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } ) )
31 fneq1 5346 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  Fn  x  <->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  x ) )
32 fveq1 5557 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  y ) )
33 reseq1 4940 . . . . . . . . . . . 12  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  |`  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) )
3433fveq2d 5562 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( G `  ( f  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
3532, 34eqeq12d 2211 . . . . . . . . . 10  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f `
 y )  =  ( G `  (
f  |`  y ) )  <-> 
( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3635ralbidv 2497 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. y  e.  x  ( { <.
(/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3731, 36anbi12d 473 . . . . . . . 8  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3837rexbidv 2498 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3930, 38anbi12d 473 . . . . . 6  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) )  <->  ( <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) ) )
4039spcegv 2852 . . . . 5  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  e.  _V  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  { <. (/)
,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
413, 29, 403syl 17 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
42 tfr.1 . . . . . 6  |-  F  = recs ( G )
4342eleq2i 2263 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  <. (/)
,  ( G `  (/) ) >.  e. recs ( G ) )
44 df-recs 6363 . . . . . 6  |- recs ( G )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
4544eleq2i 2263 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e. recs ( G )  <->  <. (/) ,  ( G `
 (/) ) >.  e.  U. { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) } )
46 eluniab 3851 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  <->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) )
4743, 45, 463bitri 206 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  E. f ( <. (/) ,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) ) )
4841, 47imbitrrdi 162 . . 3  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  <. (/) ,  ( G `
 (/) ) >.  e.  F
) )
495, 28, 48mp2and 433 . 2  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  F )
50 opeldmg 4871 . . 3  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( <.
(/) ,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
511, 50mpan 424 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( <. (/)
,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
5249, 51mpd 13 1  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763   (/)c0 3450   {csn 3622   <.cop 3625   U.cuni 3839   Oncon0 4398   suc csuc 4400   dom cdm 4663    |` cres 4665    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfr0  6381
  Copyright terms: Public domain W3C validator