| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr0dm | Unicode version | ||
| Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr.1 |
|
| Ref | Expression |
|---|---|
| tfr0dm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4160 |
. . . . 5
| |
| 2 | opexg 4261 |
. . . . 5
| |
| 3 | 1, 2 | mpan 424 |
. . . 4
|
| 4 | snidg 3651 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | fnsng 5305 |
. . . . 5
| |
| 7 | 1, 6 | mpan 424 |
. . . 4
|
| 8 | fvsng 5758 |
. . . . . . 7
| |
| 9 | 1, 8 | mpan 424 |
. . . . . 6
|
| 10 | res0 4950 |
. . . . . . 7
| |
| 11 | 10 | fveq2i 5561 |
. . . . . 6
|
| 12 | 9, 11 | eqtr4di 2247 |
. . . . 5
|
| 13 | fveq2 5558 |
. . . . . . 7
| |
| 14 | reseq2 4941 |
. . . . . . . 8
| |
| 15 | 14 | fveq2d 5562 |
. . . . . . 7
|
| 16 | 13, 15 | eqeq12d 2211 |
. . . . . 6
|
| 17 | 1, 16 | ralsn 3665 |
. . . . 5
|
| 18 | 12, 17 | sylibr 134 |
. . . 4
|
| 19 | suc0 4446 |
. . . . . 6
| |
| 20 | 0elon 4427 |
. . . . . . 7
| |
| 21 | 20 | onsuci 4552 |
. . . . . 6
|
| 22 | 19, 21 | eqeltrri 2270 |
. . . . 5
|
| 23 | fneq2 5347 |
. . . . . . 7
| |
| 24 | raleq 2693 |
. . . . . . 7
| |
| 25 | 23, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | rspcev 2868 |
. . . . 5
|
| 27 | 22, 26 | mpan 424 |
. . . 4
|
| 28 | 7, 18, 27 | syl2anc 411 |
. . 3
|
| 29 | snexg 4217 |
. . . . 5
| |
| 30 | eleq2 2260 |
. . . . . . 7
| |
| 31 | fneq1 5346 |
. . . . . . . . 9
| |
| 32 | fveq1 5557 |
. . . . . . . . . . 11
| |
| 33 | reseq1 4940 |
. . . . . . . . . . . 12
| |
| 34 | 33 | fveq2d 5562 |
. . . . . . . . . . 11
|
| 35 | 32, 34 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 36 | 35 | ralbidv 2497 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 473 |
. . . . . . . 8
|
| 38 | 37 | rexbidv 2498 |
. . . . . . 7
|
| 39 | 30, 38 | anbi12d 473 |
. . . . . 6
|
| 40 | 39 | spcegv 2852 |
. . . . 5
|
| 41 | 3, 29, 40 | 3syl 17 |
. . . 4
|
| 42 | tfr.1 |
. . . . . 6
| |
| 43 | 42 | eleq2i 2263 |
. . . . 5
|
| 44 | df-recs 6363 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2263 |
. . . . 5
|
| 46 | eluniab 3851 |
. . . . 5
| |
| 47 | 43, 45, 46 | 3bitri 206 |
. . . 4
|
| 48 | 41, 47 | imbitrrdi 162 |
. . 3
|
| 49 | 5, 28, 48 | mp2and 433 |
. 2
|
| 50 | opeldmg 4871 |
. . 3
| |
| 51 | 1, 50 | mpan 424 |
. 2
|
| 52 | 49, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-recs 6363 |
| This theorem is referenced by: tfr0 6381 |
| Copyright terms: Public domain | W3C validator |