Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr0dm | Unicode version |
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
Ref | Expression |
---|---|
tfr.1 | recs |
Ref | Expression |
---|---|
tfr0dm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . . 5 | |
2 | opexg 4206 | . . . . 5 | |
3 | 1, 2 | mpan 421 | . . . 4 |
4 | snidg 3605 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | fnsng 5235 | . . . . 5 | |
7 | 1, 6 | mpan 421 | . . . 4 |
8 | fvsng 5681 | . . . . . . 7 | |
9 | 1, 8 | mpan 421 | . . . . . 6 |
10 | res0 4888 | . . . . . . 7 | |
11 | 10 | fveq2i 5489 | . . . . . 6 |
12 | 9, 11 | eqtr4di 2217 | . . . . 5 |
13 | fveq2 5486 | . . . . . . 7 | |
14 | reseq2 4879 | . . . . . . . 8 | |
15 | 14 | fveq2d 5490 | . . . . . . 7 |
16 | 13, 15 | eqeq12d 2180 | . . . . . 6 |
17 | 1, 16 | ralsn 3619 | . . . . 5 |
18 | 12, 17 | sylibr 133 | . . . 4 |
19 | suc0 4389 | . . . . . 6 | |
20 | 0elon 4370 | . . . . . . 7 | |
21 | 20 | onsuci 4493 | . . . . . 6 |
22 | 19, 21 | eqeltrri 2240 | . . . . 5 |
23 | fneq2 5277 | . . . . . . 7 | |
24 | raleq 2661 | . . . . . . 7 | |
25 | 23, 24 | anbi12d 465 | . . . . . 6 |
26 | 25 | rspcev 2830 | . . . . 5 |
27 | 22, 26 | mpan 421 | . . . 4 |
28 | 7, 18, 27 | syl2anc 409 | . . 3 |
29 | snexg 4163 | . . . . 5 | |
30 | eleq2 2230 | . . . . . . 7 | |
31 | fneq1 5276 | . . . . . . . . 9 | |
32 | fveq1 5485 | . . . . . . . . . . 11 | |
33 | reseq1 4878 | . . . . . . . . . . . 12 | |
34 | 33 | fveq2d 5490 | . . . . . . . . . . 11 |
35 | 32, 34 | eqeq12d 2180 | . . . . . . . . . 10 |
36 | 35 | ralbidv 2466 | . . . . . . . . 9 |
37 | 31, 36 | anbi12d 465 | . . . . . . . 8 |
38 | 37 | rexbidv 2467 | . . . . . . 7 |
39 | 30, 38 | anbi12d 465 | . . . . . 6 |
40 | 39 | spcegv 2814 | . . . . 5 |
41 | 3, 29, 40 | 3syl 17 | . . . 4 |
42 | tfr.1 | . . . . . 6 recs | |
43 | 42 | eleq2i 2233 | . . . . 5 recs |
44 | df-recs 6273 | . . . . . 6 recs | |
45 | 44 | eleq2i 2233 | . . . . 5 recs |
46 | eluniab 3801 | . . . . 5 | |
47 | 43, 45, 46 | 3bitri 205 | . . . 4 |
48 | 41, 47 | syl6ibr 161 | . . 3 |
49 | 5, 28, 48 | mp2and 430 | . 2 |
50 | opeldmg 4809 | . . 3 | |
51 | 1, 50 | mpan 421 | . 2 |
52 | 49, 51 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 c0 3409 csn 3576 cop 3579 cuni 3789 con0 4341 csuc 4343 cdm 4604 cres 4606 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfr0 6291 |
Copyright terms: Public domain | W3C validator |