ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0dm Unicode version

Theorem tfr0dm 6212
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr0dm  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )

Proof of Theorem tfr0dm
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4050 . . . . 5  |-  (/)  e.  _V
2 opexg 4145 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
31, 2mpan 420 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  _V )
4 snidg 3549 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  -> 
<. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } )
53, 4syl 14 . . 3  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. } )
6 fnsng 5165 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  { <. (/)
,  ( G `  (/) ) >. }  Fn  { (/)
} )
71, 6mpan 420 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) } )
8 fvsng 5609 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
91, 8mpan 420 . . . . . 6  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 (/) ) )
10 res0 4818 . . . . . . 7  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) )  =  (/)
1110fveq2i 5417 . . . . . 6  |-  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) )  =  ( G `  (/) )
129, 11syl6eqr 2188 . . . . 5  |-  ( ( G `  (/) )  e.  V  ->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
13 fveq2 5414 . . . . . . 7  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  (/) ) )
14 reseq2 4809 . . . . . . . 8  |-  ( y  =  (/)  ->  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
)  =  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) )
1514fveq2d 5418 . . . . . . 7  |-  ( y  =  (/)  ->  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  (/) ) ) )
1613, 15eqeq12d 2152 . . . . . 6  |-  ( y  =  (/)  ->  ( ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) ) )
171, 16ralsn 3562 . . . . 5  |-  ( A. y  e.  { (/) }  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. } `  (/) )  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  (/) ) ) )
1812, 17sylibr 133 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
19 suc0 4328 . . . . . 6  |-  suc  (/)  =  { (/)
}
20 0elon 4309 . . . . . . 7  |-  (/)  e.  On
2120onsuci 4427 . . . . . 6  |-  suc  (/)  e.  On
2219, 21eqeltrri 2211 . . . . 5  |-  { (/) }  e.  On
23 fneq2 5207 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x 
<->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) } ) )
24 raleq 2624 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) )  <->  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
2523, 24anbi12d 464 . . . . . 6  |-  ( x  =  { (/) }  ->  ( ( { <. (/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) ) )
2625rspcev 2784 . . . . 5  |-  ( ( { (/) }  e.  On  /\  ( { <. (/) ,  ( G `  (/) ) >. }  Fn  { (/) }  /\  A. y  e.  { (/) }  ( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
2722, 26mpan 420 . . . 4  |-  ( ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  {
(/) }  /\  A. y  e.  { (/) }  ( {
<. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )  ->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )
287, 18, 27syl2anc 408 . . 3  |-  ( ( G `  (/) )  e.  V  ->  E. x  e.  On  ( { <. (/)
,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/) ,  ( G `
 (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
29 snexg 4103 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  _V  ->  { <. (/) ,  ( G `
 (/) ) >. }  e.  _V )
30 eleq2 2201 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( <. (/) ,  ( G `  (/) ) >.  e.  f  <->  <. (/) ,  ( G `
 (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. } ) )
31 fneq1 5206 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  Fn  x  <->  { <. (/) ,  ( G `
 (/) ) >. }  Fn  x ) )
32 fveq1 5413 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f `  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. } `  y ) )
33 reseq1 4808 . . . . . . . . . . . 12  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( f  |`  y )  =  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) )
3433fveq2d 5418 . . . . . . . . . . 11  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( G `  ( f  |`  y
) )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) )
3532, 34eqeq12d 2152 . . . . . . . . . 10  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f `
 y )  =  ( G `  (
f  |`  y ) )  <-> 
( { <. (/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( { <. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3635ralbidv 2435 . . . . . . . . 9  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. y  e.  x  ( { <.
(/) ,  ( G `  (/) ) >. } `  y )  =  ( G `  ( {
<. (/) ,  ( G `
 (/) ) >. }  |`  y
) ) ) )
3731, 36anbi12d 464 . . . . . . . 8  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) )  <->  ( { <.
(/) ,  ( G `  (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3837rexbidv 2436 . . . . . . 7  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <->  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) )
3930, 38anbi12d 464 . . . . . 6  |-  ( f  =  { <. (/) ,  ( G `  (/) ) >. }  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) )  <->  ( <. (/) ,  ( G `  (/) ) >.  e.  { <. (/) ,  ( G `
 (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) ) ) )
4039spcegv 2769 . . . . 5  |-  ( {
<. (/) ,  ( G `
 (/) ) >. }  e.  _V  ->  ( ( <. (/)
,  ( G `  (/) ) >.  e.  { <. (/)
,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
413, 29, 403syl 17 . . . 4  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) ) )
42 tfr.1 . . . . . 6  |-  F  = recs ( G )
4342eleq2i 2204 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  <. (/)
,  ( G `  (/) ) >.  e. recs ( G ) )
44 df-recs 6195 . . . . . 6  |- recs ( G )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
4544eleq2i 2204 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e. recs ( G )  <->  <. (/) ,  ( G `
 (/) ) >.  e.  U. { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) } )
46 eluniab 3743 . . . . 5  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  <->  E. f ( <. (/)
,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) ) )
4743, 45, 463bitri 205 . . . 4  |-  ( <. (/)
,  ( G `  (/) ) >.  e.  F  <->  E. f ( <. (/) ,  ( G `  (/) ) >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) ) )
4841, 47syl6ibr 161 . . 3  |-  ( ( G `  (/) )  e.  V  ->  ( ( <.
(/) ,  ( G `  (/) ) >.  e.  { <.
(/) ,  ( G `  (/) ) >. }  /\  E. x  e.  On  ( { <. (/) ,  ( G `
 (/) ) >. }  Fn  x  /\  A. y  e.  x  ( { <. (/)
,  ( G `  (/) ) >. } `  y
)  =  ( G `
 ( { <. (/)
,  ( G `  (/) ) >. }  |`  y
) ) ) )  ->  <. (/) ,  ( G `
 (/) ) >.  e.  F
) )
495, 28, 48mp2and 429 . 2  |-  ( ( G `  (/) )  e.  V  ->  <. (/) ,  ( G `  (/) ) >.  e.  F )
50 opeldmg 4739 . . 3  |-  ( (
(/)  e.  _V  /\  ( G `  (/) )  e.  V )  ->  ( <.
(/) ,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
511, 50mpan 420 . 2  |-  ( ( G `  (/) )  e.  V  ->  ( <. (/)
,  ( G `  (/) ) >.  e.  F  -> 
(/)  e.  dom  F ) )
5249, 51mpd 13 1  |-  ( ( G `  (/) )  e.  V  ->  (/)  e.  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   _Vcvv 2681   (/)c0 3358   {csn 3522   <.cop 3525   U.cuni 3731   Oncon0 4280   suc csuc 4282   dom cdm 4534    |` cres 4536    Fn wfn 5113   ` cfv 5118  recscrecs 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126  df-recs 6195
This theorem is referenced by:  tfr0  6213
  Copyright terms: Public domain W3C validator