| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr0dm | Unicode version | ||
| Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr.1 |
|
| Ref | Expression |
|---|---|
| tfr0dm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4171 |
. . . . 5
| |
| 2 | opexg 4272 |
. . . . 5
| |
| 3 | 1, 2 | mpan 424 |
. . . 4
|
| 4 | snidg 3662 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | fnsng 5321 |
. . . . 5
| |
| 7 | 1, 6 | mpan 424 |
. . . 4
|
| 8 | fvsng 5780 |
. . . . . . 7
| |
| 9 | 1, 8 | mpan 424 |
. . . . . 6
|
| 10 | res0 4963 |
. . . . . . 7
| |
| 11 | 10 | fveq2i 5579 |
. . . . . 6
|
| 12 | 9, 11 | eqtr4di 2256 |
. . . . 5
|
| 13 | fveq2 5576 |
. . . . . . 7
| |
| 14 | reseq2 4954 |
. . . . . . . 8
| |
| 15 | 14 | fveq2d 5580 |
. . . . . . 7
|
| 16 | 13, 15 | eqeq12d 2220 |
. . . . . 6
|
| 17 | 1, 16 | ralsn 3676 |
. . . . 5
|
| 18 | 12, 17 | sylibr 134 |
. . . 4
|
| 19 | suc0 4458 |
. . . . . 6
| |
| 20 | 0elon 4439 |
. . . . . . 7
| |
| 21 | 20 | onsuci 4564 |
. . . . . 6
|
| 22 | 19, 21 | eqeltrri 2279 |
. . . . 5
|
| 23 | fneq2 5363 |
. . . . . . 7
| |
| 24 | raleq 2702 |
. . . . . . 7
| |
| 25 | 23, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | rspcev 2877 |
. . . . 5
|
| 27 | 22, 26 | mpan 424 |
. . . 4
|
| 28 | 7, 18, 27 | syl2anc 411 |
. . 3
|
| 29 | snexg 4228 |
. . . . 5
| |
| 30 | eleq2 2269 |
. . . . . . 7
| |
| 31 | fneq1 5362 |
. . . . . . . . 9
| |
| 32 | fveq1 5575 |
. . . . . . . . . . 11
| |
| 33 | reseq1 4953 |
. . . . . . . . . . . 12
| |
| 34 | 33 | fveq2d 5580 |
. . . . . . . . . . 11
|
| 35 | 32, 34 | eqeq12d 2220 |
. . . . . . . . . 10
|
| 36 | 35 | ralbidv 2506 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 473 |
. . . . . . . 8
|
| 38 | 37 | rexbidv 2507 |
. . . . . . 7
|
| 39 | 30, 38 | anbi12d 473 |
. . . . . 6
|
| 40 | 39 | spcegv 2861 |
. . . . 5
|
| 41 | 3, 29, 40 | 3syl 17 |
. . . 4
|
| 42 | tfr.1 |
. . . . . 6
| |
| 43 | 42 | eleq2i 2272 |
. . . . 5
|
| 44 | df-recs 6391 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2272 |
. . . . 5
|
| 46 | eluniab 3862 |
. . . . 5
| |
| 47 | 43, 45, 46 | 3bitri 206 |
. . . 4
|
| 48 | 41, 47 | imbitrrdi 162 |
. . 3
|
| 49 | 5, 28, 48 | mp2and 433 |
. 2
|
| 50 | opeldmg 4883 |
. . 3
| |
| 51 | 1, 50 | mpan 424 |
. 2
|
| 52 | 49, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-recs 6391 |
| This theorem is referenced by: tfr0 6409 |
| Copyright terms: Public domain | W3C validator |