Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr0dm | Unicode version |
Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
Ref | Expression |
---|---|
tfr.1 | recs |
Ref | Expression |
---|---|
tfr0dm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . 5 | |
2 | opexg 4213 | . . . . 5 | |
3 | 1, 2 | mpan 422 | . . . 4 |
4 | snidg 3612 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | fnsng 5245 | . . . . 5 | |
7 | 1, 6 | mpan 422 | . . . 4 |
8 | fvsng 5692 | . . . . . . 7 | |
9 | 1, 8 | mpan 422 | . . . . . 6 |
10 | res0 4895 | . . . . . . 7 | |
11 | 10 | fveq2i 5499 | . . . . . 6 |
12 | 9, 11 | eqtr4di 2221 | . . . . 5 |
13 | fveq2 5496 | . . . . . . 7 | |
14 | reseq2 4886 | . . . . . . . 8 | |
15 | 14 | fveq2d 5500 | . . . . . . 7 |
16 | 13, 15 | eqeq12d 2185 | . . . . . 6 |
17 | 1, 16 | ralsn 3626 | . . . . 5 |
18 | 12, 17 | sylibr 133 | . . . 4 |
19 | suc0 4396 | . . . . . 6 | |
20 | 0elon 4377 | . . . . . . 7 | |
21 | 20 | onsuci 4500 | . . . . . 6 |
22 | 19, 21 | eqeltrri 2244 | . . . . 5 |
23 | fneq2 5287 | . . . . . . 7 | |
24 | raleq 2665 | . . . . . . 7 | |
25 | 23, 24 | anbi12d 470 | . . . . . 6 |
26 | 25 | rspcev 2834 | . . . . 5 |
27 | 22, 26 | mpan 422 | . . . 4 |
28 | 7, 18, 27 | syl2anc 409 | . . 3 |
29 | snexg 4170 | . . . . 5 | |
30 | eleq2 2234 | . . . . . . 7 | |
31 | fneq1 5286 | . . . . . . . . 9 | |
32 | fveq1 5495 | . . . . . . . . . . 11 | |
33 | reseq1 4885 | . . . . . . . . . . . 12 | |
34 | 33 | fveq2d 5500 | . . . . . . . . . . 11 |
35 | 32, 34 | eqeq12d 2185 | . . . . . . . . . 10 |
36 | 35 | ralbidv 2470 | . . . . . . . . 9 |
37 | 31, 36 | anbi12d 470 | . . . . . . . 8 |
38 | 37 | rexbidv 2471 | . . . . . . 7 |
39 | 30, 38 | anbi12d 470 | . . . . . 6 |
40 | 39 | spcegv 2818 | . . . . 5 |
41 | 3, 29, 40 | 3syl 17 | . . . 4 |
42 | tfr.1 | . . . . . 6 recs | |
43 | 42 | eleq2i 2237 | . . . . 5 recs |
44 | df-recs 6284 | . . . . . 6 recs | |
45 | 44 | eleq2i 2237 | . . . . 5 recs |
46 | eluniab 3808 | . . . . 5 | |
47 | 43, 45, 46 | 3bitri 205 | . . . 4 |
48 | 41, 47 | syl6ibr 161 | . . 3 |
49 | 5, 28, 48 | mp2and 431 | . 2 |
50 | opeldmg 4816 | . . 3 | |
51 | 1, 50 | mpan 422 | . 2 |
52 | 49, 51 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 c0 3414 csn 3583 cop 3586 cuni 3796 con0 4348 csuc 4350 cdm 4611 cres 4613 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-recs 6284 |
This theorem is referenced by: tfr0 6302 |
Copyright terms: Public domain | W3C validator |