| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr0dm | Unicode version | ||
| Description: Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr.1 |
|
| Ref | Expression |
|---|---|
| tfr0dm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4211 |
. . . . 5
| |
| 2 | opexg 4314 |
. . . . 5
| |
| 3 | 1, 2 | mpan 424 |
. . . 4
|
| 4 | snidg 3695 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | fnsng 5368 |
. . . . 5
| |
| 7 | 1, 6 | mpan 424 |
. . . 4
|
| 8 | fvsng 5835 |
. . . . . . 7
| |
| 9 | 1, 8 | mpan 424 |
. . . . . 6
|
| 10 | res0 5009 |
. . . . . . 7
| |
| 11 | 10 | fveq2i 5630 |
. . . . . 6
|
| 12 | 9, 11 | eqtr4di 2280 |
. . . . 5
|
| 13 | fveq2 5627 |
. . . . . . 7
| |
| 14 | reseq2 5000 |
. . . . . . . 8
| |
| 15 | 14 | fveq2d 5631 |
. . . . . . 7
|
| 16 | 13, 15 | eqeq12d 2244 |
. . . . . 6
|
| 17 | 1, 16 | ralsn 3709 |
. . . . 5
|
| 18 | 12, 17 | sylibr 134 |
. . . 4
|
| 19 | suc0 4502 |
. . . . . 6
| |
| 20 | 0elon 4483 |
. . . . . . 7
| |
| 21 | 20 | onsuci 4608 |
. . . . . 6
|
| 22 | 19, 21 | eqeltrri 2303 |
. . . . 5
|
| 23 | fneq2 5410 |
. . . . . . 7
| |
| 24 | raleq 2728 |
. . . . . . 7
| |
| 25 | 23, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | rspcev 2907 |
. . . . 5
|
| 27 | 22, 26 | mpan 424 |
. . . 4
|
| 28 | 7, 18, 27 | syl2anc 411 |
. . 3
|
| 29 | snexg 4268 |
. . . . 5
| |
| 30 | eleq2 2293 |
. . . . . . 7
| |
| 31 | fneq1 5409 |
. . . . . . . . 9
| |
| 32 | fveq1 5626 |
. . . . . . . . . . 11
| |
| 33 | reseq1 4999 |
. . . . . . . . . . . 12
| |
| 34 | 33 | fveq2d 5631 |
. . . . . . . . . . 11
|
| 35 | 32, 34 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 36 | 35 | ralbidv 2530 |
. . . . . . . . 9
|
| 37 | 31, 36 | anbi12d 473 |
. . . . . . . 8
|
| 38 | 37 | rexbidv 2531 |
. . . . . . 7
|
| 39 | 30, 38 | anbi12d 473 |
. . . . . 6
|
| 40 | 39 | spcegv 2891 |
. . . . 5
|
| 41 | 3, 29, 40 | 3syl 17 |
. . . 4
|
| 42 | tfr.1 |
. . . . . 6
| |
| 43 | 42 | eleq2i 2296 |
. . . . 5
|
| 44 | df-recs 6451 |
. . . . . 6
| |
| 45 | 44 | eleq2i 2296 |
. . . . 5
|
| 46 | eluniab 3900 |
. . . . 5
| |
| 47 | 43, 45, 46 | 3bitri 206 |
. . . 4
|
| 48 | 41, 47 | imbitrrdi 162 |
. . 3
|
| 49 | 5, 28, 48 | mp2and 433 |
. 2
|
| 50 | opeldmg 4928 |
. . 3
| |
| 51 | 1, 50 | mpan 424 |
. 2
|
| 52 | 49, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-recs 6451 |
| This theorem is referenced by: tfr0 6469 |
| Copyright terms: Public domain | W3C validator |