ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemssrecs Unicode version

Theorem tfrcllemssrecs 6419
Description: Lemma for tfrcl 6431. The union of functions acceptable for tfrcl 6431 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcllemssrecs.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemssrecs.x  |-  ( ph  ->  Ord  X )
Assertion
Ref Expression
tfrcllemssrecs  |-  ( ph  ->  U. A  C_ recs ( G ) )
Distinct variable groups:    f, G, x, y    x, X    ph, f
Allowed substitution hints:    ph( x, y)    A( x, y, f)    S( x, y, f)    X( y, f)

Proof of Theorem tfrcllemssrecs
StepHypRef Expression
1 tfrcllemssrecs.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
2 tfrcllemssrecs.x . . . . . 6  |-  ( ph  ->  Ord  X )
3 ordsson 4529 . . . . . 6  |-  ( Ord 
X  ->  X  C_  On )
4 ssrexv 3249 . . . . . 6  |-  ( X 
C_  On  ->  ( E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) )  ->  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) ) )
52, 3, 43syl 17 . . . . 5  |-  ( ph  ->  ( E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) )  ->  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) ) )
65ss2abdv 3257 . . . 4  |-  ( ph  ->  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) } 
C_  { f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) } )
71, 6eqsstrid 3230 . . 3  |-  ( ph  ->  A  C_  { f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) } )
87unissd 3864 . 2  |-  ( ph  ->  U. A  C_  U. {
f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) ) } )
9 ffn 5410 . . . . . . 7  |-  ( f : x --> S  -> 
f  Fn  x )
109anim1i 340 . . . . . 6  |-  ( ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) )  -> 
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) )
1110reximi 2594 . . . . 5  |-  ( E. x  e.  On  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) )  ->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) )
1211ss2abi 3256 . . . 4  |-  { f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) ) } 
C_  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) }
1312unissi 3863 . . 3  |-  U. {
f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) ) } 
C_  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) ) }
14 df-recs 6372 . . 3  |- recs ( G )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
1513, 14sseqtrri 3219 . 2  |-  U. {
f  |  E. x  e.  On  ( f : x --> S  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  y
) ) ) } 
C_ recs ( G )
168, 15sstrdi 3196 1  |-  ( ph  ->  U. A  C_ recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   {cab 2182   A.wral 2475   E.wrex 2476    C_ wss 3157   U.cuni 3840   Ord word 4398   Oncon0 4399    |` cres 4666    Fn wfn 5254   -->wf 5255   ` cfv 5259  recscrecs 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3841  df-tr 4133  df-iord 4402  df-on 4404  df-f 5263  df-recs 6372
This theorem is referenced by:  tfrcllembfn  6424  tfrcllemubacc  6426  tfrcllemres  6429
  Copyright terms: Public domain W3C validator