Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recsfval | Unicode version |
Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
recsfval | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 6273 | . 2 recs | |
2 | tfrlem.1 | . . 3 | |
3 | 2 | unieqi 3799 | . 2 |
4 | 1, 3 | eqtr4i 2189 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 cab 2151 wral 2444 wrex 2445 cuni 3789 con0 4341 cres 4606 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-uni 3790 df-recs 6273 |
This theorem is referenced by: tfrlem6 6284 tfrlem7 6285 tfrlem8 6286 tfrlem9 6287 tfrlemibfn 6296 tfrlemiubacc 6298 tfrlemi14d 6301 tfrexlem 6302 |
Copyright terms: Public domain | W3C validator |