| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recsfval | Unicode version | ||
| Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| recsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 6451 |
. 2
| |
| 2 | tfrlem.1 |
. . 3
| |
| 3 | 2 | unieqi 3898 |
. 2
|
| 4 | 1, 3 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 df-recs 6451 |
| This theorem is referenced by: tfrlem6 6462 tfrlem7 6463 tfrlem8 6464 tfrlem9 6465 tfrlemibfn 6474 tfrlemiubacc 6476 tfrlemi14d 6479 tfrexlem 6480 |
| Copyright terms: Public domain | W3C validator |