Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recsfval | Unicode version |
Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
recsfval | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 6284 | . 2 recs | |
2 | tfrlem.1 | . . 3 | |
3 | 2 | unieqi 3806 | . 2 |
4 | 1, 3 | eqtr4i 2194 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 cab 2156 wral 2448 wrex 2449 cuni 3796 con0 4348 cres 4613 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 df-recs 6284 |
This theorem is referenced by: tfrlem6 6295 tfrlem7 6296 tfrlem8 6297 tfrlem9 6298 tfrlemibfn 6307 tfrlemiubacc 6309 tfrlemi14d 6312 tfrexlem 6313 |
Copyright terms: Public domain | W3C validator |