HomeHome Intuitionistic Logic Explorer
Theorem List (p. 64 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6301-6400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfo1st 6301 The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 1st : _V -onto-> _V
 
Theoremfo2nd 6302 The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 2nd : _V -onto-> _V
 
Theoremf1stres 6303 Mapping of a restriction of the 
1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A
 
Theoremf2ndres 6304 Mapping of a restriction of the 
2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B
 
Theoremfo1stresm 6305* Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
 
Theoremfo2ndresm 6306* Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
 
Theorem1stcof 6307 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 1st  o.  F ) : A --> B )
 
Theorem2ndcof 6308 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 2nd  o.  F ) : A --> C )
 
Theoremxp1st 6309 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
 
Theoremxp2nd 6310 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
 
Theorem1stexg 6311 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 1st `  A )  e.  _V )
 
Theorem2ndexg 6312 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 2nd `  A )  e.  _V )
 
Theoremelxp6 6313 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5215. (Contributed by NM, 9-Oct-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >.  /\  (
 ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremelxp7 6314 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5215. (Contributed by NM, 19-Aug-2006.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremoprssdmm 6315* Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
 |-  ( ( ph  /\  u  e.  S )  ->  E. v  v  e.  u )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ph  ->  Rel  F )   =>    |-  ( ph  ->  ( S  X.  S )  C_  dom  F )
 
Theoremeqopi 6316 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ( V  X.  W ) 
 /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 )  ->  A  =  <. B ,  C >. )
 
Theoremxp2 6317* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x )  e.  B ) }
 
Theoremunielxp 6318 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
 
Theorem1st2nd2 6319 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
 |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theoremxpopth 6320 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
 |-  ( ( A  e.  ( C  X.  D ) 
 /\  B  e.  ( R  X.  S ) ) 
 ->  ( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  A  =  B ) )
 
Theoremeqop 6321 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 ) )
 
Theoremeqop2 6322 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
 
Theoremop1steq 6323* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  ( V  X.  W )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
 
Theorem2nd1st 6324 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
 |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A ) >. )
 
Theorem1st2nd 6325 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theorem1stdm 6326 The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 1st `  A )  e.  dom  R )
 
Theorem2ndrn 6327 The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 2nd `  A )  e.  ran  R )
 
Theorem1st2ndbr 6328 Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  ( 1st `  A ) B ( 2nd `  A ) )
 
Theoremreleldm2 6329* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
 
Theoremreldm 6330* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  dom 
 A  =  ran  ( x  e.  A  |->  ( 1st `  x ) ) )
 
Theoremsbcopeq1a 6331 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3038 that avoids the existential quantifiers of copsexg 4329). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
 
Theoremcsbopeq1a 6332 Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3133). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B  =  B )
 
Theoremdfopab2 6333* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  | 
 [. ( 1st `  z
 )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }
 
Theoremdfoprab3s 6334* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
 
Theoremdfoprab3 6335* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremdfoprab4 6336* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfoprab4f 6337* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( w  =  <. x ,  y >.  ->  ( ph  <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfxp3 6338* Define the cross product of three classes. Compare df-xp 4724. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
 |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }
 
Theoremelopabi 6339* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  ( 1st `  A )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  | 
 ph }  ->  ch )
 
Theoremeloprabi 6340* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch ) )   &    |-  ( z  =  ( 2nd `  A )  ->  ( ch  <->  th ) )   =>    |-  ( A  e.  {
 <. <. x ,  y >. ,  z >.  |  ph } 
 ->  th )
 
Theoremmpomptsx 6341* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremmpompts 6342* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremdmmpossx 6343* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  dom  F  C_  U_ x  e.  A  ( { x }  X.  B )
 
Theoremfmpox 6344* Functionality, domain and codomain of a class given by the maps-to notation, where  B ( x ) is not constant but depends on  x. (Contributed by NM, 29-Dec-2014.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( { x }  X.  B ) --> D )
 
Theoremfmpo 6345* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
 
Theoremfnmpo 6346* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B ) )
 
Theoremfnmpoi 6347* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |-  F  Fn  ( A  X.  B )
 
Theoremdmmpo 6348* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |- 
 dom  F  =  ( A  X.  B )
 
Theoremmpofvex 6349* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X ) 
 ->  ( R F S )  e.  _V )
 
Theoremmpofvexi 6350* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   &    |-  R  e.  _V   &    |-  S  e.  _V   =>    |-  ( R F S )  e.  _V
 
Theoremovmpoelrn 6351* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
 |-  O  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x  e.  A  A. y  e.  B  C  e.  M  /\  X  e.  A  /\  Y  e.  B )  ->  ( X O Y )  e.  M )
 
Theoremdmmpoga 6352* Domain of an operation given by the maps-to notation, closed form of dmmpo 6348. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremdmmpog 6353* Domain of an operation given by the maps-to notation, closed form of dmmpo 6348. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremmpoexxg 6354* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexg 6355* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexga 6356* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A ,  y  e.  B  |->  C )  e. 
 _V )
 
Theoremmpoexw 6357* Weak version of mpoex 6358 that holds without ax-coll 4198. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  D  e.  _V   &    |-  A. x  e.  A  A. y  e.  B  C  e.  D   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremmpoex 6358* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremfnmpoovd 6359* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
 |-  ( ph  ->  M  Fn  ( A  X.  B ) )   &    |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )   &    |-  ( ( ph  /\  i  e.  A  /\  j  e.  B )  ->  D  e.  U )   &    |-  ( ( ph  /\  a  e.  A  /\  b  e.  B )  ->  C  e.  V )   =>    |-  ( ph  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
 
Theoremfmpoco 6360* Composition of two functions. Variation of fmptco 5800 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  R  e.  C )   &    |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )   &    |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )   &    |-  (
 z  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  T ) )
 
Theoremoprabco 6361* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) )   =>    |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
 
Theoremoprab2co 6362* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  <. C ,  D >. )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )   =>    |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
 
Theoremdf1st2 6363* An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
 
Theoremdf2nd2 6364* An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
 
Theorem1stconst 6365 The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
 |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B }
 ) ) : ( A  X.  { B } ) -1-1-onto-> A )
 
Theorem2ndconst 6366 The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
 |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
 
Theoremdfmpo 6367* Alternate definition for the maps-to notation df-mpo 6005 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  C  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  = 
 U_ x  e.  A  U_ y  e.  B  { <.
 <. x ,  y >. ,  C >. }
 
Theoremcnvf1olem 6368 Lemma for cnvf1o 6369. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) ) 
 ->  ( C  e.  `' A  /\  B  =  U. `' { C } )
 )
 
Theoremcnvf1o 6369* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( Rel  A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
 
Theoremf2ndf 6370 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F --> B )
 
Theoremfo2ndf 6371 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F -onto-> ran  F )
 
Theoremf1o2ndf1 6372 The  2nd (second component of an ordered pair) function restricted to a one-to-one function  F is a one-to-one function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A -1-1-> B 
 ->  ( 2nd  |`  F ) : F -1-1-onto-> ran  F )
 
Theoremalgrflem 6373 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( B ( F  o.  1st ) C )  =  ( F `
  B )
 
Theoremalgrflemg 6374 Lemma for algrf 12562 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
 |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `  B ) )
 
Theoremxporderlem 6375* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  ( <. a ,  b >. T
 <. c ,  d >.  <->  (
 ( ( a  e.  A  /\  c  e.  A )  /\  (
 b  e.  B  /\  d  e.  B )
 )  /\  ( a R c  \/  (
 a  =  c  /\  b S d ) ) ) )
 
Theorempoxp 6376* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Po  A  /\  S  Po  B ) 
 ->  T  Po  ( A  X.  B ) )
 
Theoremspc2ed 6377* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.)
 |- 
 F/ x ch   &    |-  F/ y ch   &    |-  ( ( ph  /\  ( x  =  A  /\  y  =  B ) )  ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  W )
 )  ->  ( ch  ->  E. x E. y ps ) )
 
Theoremcnvoprab 6378* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
 |- 
 F/ x ps   &    |-  F/ y ps   &    |-  ( a  = 
 <. x ,  y >.  ->  ( ps  <->  ph ) )   &    |-  ( ps  ->  a  e.  ( _V  X.  _V ) )   =>    |-  `' { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. z ,  a >.  |  ps }
 
Theoremf1od2 6379* Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  e.  W )   &    |-  (
 ( ph  /\  z  e.  D )  ->  ( I  e.  X  /\  J  e.  Y )
 )   &    |-  ( ph  ->  (
 ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( z  e.  D  /\  ( x  =  I  /\  y  =  J ) ) ) )   =>    |-  ( ph  ->  F : ( A  X.  B ) -1-1-onto-> D )
 
Theoremdisjxp1 6380* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  -> Disj  x  e.  A  B )   =>    |-  ( ph  -> Disj  x  e.  A  ( B  X.  C ) )
 
Theoremdisjsnxp 6381* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |- Disj  j  e.  A  ( {
 j }  X.  B )
 
2.6.16  Special maps-to operations

The following theorems are about maps-to operations (see df-mpo 6005) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 6081, ovmpox 6132 and fmpox 6344). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.

 
Theoremopeliunxp2f 6382* Membership in a union of Cartesian products, using bound-variable hypothesis for  E instead of distinct variable conditions as in opeliunxp2 4861. (Contributed by AV, 25-Oct-2020.)
 |-  F/_ x E   &    |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremmpoxopn0yelv 6383* If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )   =>    |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  ( <. V ,  W >. F K )  ->  K  e.  V ) )
 
Theoremmpoxopoveq 6384* Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  | 
 ph } )   =>    |-  ( ( ( V  e.  X  /\  W  e.  Y )  /\  K  e.  V ) 
 ->  ( <. V ,  W >. F K )  =  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } )
 
Theoremmpoxopovel 6385* Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
 |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  | 
 ph } )   =>    |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  ( <. V ,  W >. F K ) 
 <->  ( K  e.  V  /\  N  e.  V  /\  [.
 <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
 ) )
 
Theoremrbropapd 6386* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y ) 
 ->  ( F M P  <->  ( F W P  /\  ch ) ) ) )
 
Theoremrbropap 6387* Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\  F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch ) ) )
 
2.6.17  Function transposition
 
Syntaxctpos 6388 The transposition of a function.
 class tpos  F
 
Definitiondf-tpos 6389* Define the transposition of a function, which is a function  G  = tpos  F satisfying  G ( x ,  y )  =  F ( y ,  x ). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
 } )  |->  U. `' { x } ) )
 
Theoremtposss 6390 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  C_  G  -> tpos 
 F  C_ tpos  G )
 
Theoremtposeq 6391 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  =  G  -> tpos 
 F  = tpos  G )
 
Theoremtposeqd 6392 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  -> tpos  F  = tpos  G )
 
Theoremtposssxp 6393 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |- tpos  F  C_  ( ( `'
 dom  F  u.  { (/) } )  X.  ran  F )
 
Theoremreltpos 6394 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- 
 Rel tpos  F
 
Theorembrtpos2 6395 Value of the transposition at a pair  <. A ,  B >.. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( B  e.  V  ->  ( Atpos  F B  <->  ( A  e.  ( `'
 dom  F  u.  { (/) } )  /\  U. `' { A } F B ) ) )
 
Theorembrtpos0 6396 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  (/) F A ) )
 
Theoremreldmtpos 6397 Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom tpos  F  <->  -.  (/)  e.  dom  F )
 
Theorembrtposg 6398 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
 
Theoremottposg 6399 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
 
Theoremdmtpos 6400 The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( Rel  dom  F  ->  dom tpos  F  =  `' dom  F )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >