ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d Unicode version

Theorem tfri1d 6303
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1d  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1d
Dummy variables  f  g  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . . . 6  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
21tfrlem3 6279 . . . . 5  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
3 tfri1d.2 . . . . 5  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
42, 3tfrlemi14d 6301 . . . 4  |-  ( ph  ->  dom recs ( G )  =  On )
5 eqid 2165 . . . . 5  |-  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }  =  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }
65tfrlem7 6285 . . . 4  |-  Fun recs ( G )
74, 6jctil 310 . . 3  |-  ( ph  ->  ( Fun recs ( G
)  /\  dom recs ( G )  =  On ) )
8 df-fn 5191 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
97, 8sylibr 133 . 2  |-  ( ph  -> recs ( G )  Fn  On )
10 tfri1d.1 . . 3  |-  F  = recs ( G )
1110fneq1i 5282 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
129, 11sylibr 133 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726   Oncon0 4341   dom cdm 4604    |` cres 4606   Fun wfun 5182    Fn wfn 5183   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfri2d  6304  tfri1  6333  rdgifnon  6347  rdgifnon2  6348  frecfnom  6369
  Copyright terms: Public domain W3C validator