ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d Unicode version

Theorem tfri1d 6390
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1d  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1d
Dummy variables  f  g  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . 6  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
21tfrlem3 6366 . . . . 5  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
3 tfri1d.2 . . . . 5  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
42, 3tfrlemi14d 6388 . . . 4  |-  ( ph  ->  dom recs ( G )  =  On )
5 eqid 2193 . . . . 5  |-  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }  =  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }
65tfrlem7 6372 . . . 4  |-  Fun recs ( G )
74, 6jctil 312 . . 3  |-  ( ph  ->  ( Fun recs ( G
)  /\  dom recs ( G )  =  On ) )
8 df-fn 5258 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
97, 8sylibr 134 . 2  |-  ( ph  -> recs ( G )  Fn  On )
10 tfri1d.1 . . 3  |-  F  = recs ( G )
1110fneq1i 5349 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
129, 11sylibr 134 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760   Oncon0 4395   dom cdm 4660    |` cres 4662   Fun wfun 5249    Fn wfn 5250   ` cfv 5255  recscrecs 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6360
This theorem is referenced by:  tfri2d  6391  tfri1  6420  rdgifnon  6434  rdgifnon2  6435  frecfnom  6456
  Copyright terms: Public domain W3C validator