ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv Unicode version

Theorem nfdisjv 4018
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1  |-  F/_ y A
nfdisjv.2  |-  F/_ y B
Assertion
Ref Expression
nfdisjv  |-  F/ yDisj  x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfdisjv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4008 . 2  |-  (Disj  x  e.  A  B  <->  A. z E* x ( x  e.  A  /\  z  e.  B ) )
2 nfcv 2336 . . . . . 6  |-  F/_ y
x
3 nfdisjv.1 . . . . . 6  |-  F/_ y A
42, 3nfel 2345 . . . . 5  |-  F/ y  x  e.  A
5 nfdisjv.2 . . . . . 6  |-  F/_ y B
65nfcri 2330 . . . . 5  |-  F/ y  z  e.  B
74, 6nfan 1576 . . . 4  |-  F/ y ( x  e.  A  /\  z  e.  B
)
87nfmo 2062 . . 3  |-  F/ y E* x ( x  e.  A  /\  z  e.  B )
98nfal 1587 . 2  |-  F/ y A. z E* x
( x  e.  A  /\  z  e.  B
)
101, 9nfxfr 1485 1  |-  F/ yDisj  x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1362   F/wnf 1471   E*wmo 2043    e. wcel 2164   F/_wnfc 2323  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rmo 2480  df-disj 4007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator