ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv Unicode version

Theorem nfdisjv 4022
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1  |-  F/_ y A
nfdisjv.2  |-  F/_ y B
Assertion
Ref Expression
nfdisjv  |-  F/ yDisj  x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfdisjv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4012 . 2  |-  (Disj  x  e.  A  B  <->  A. z E* x ( x  e.  A  /\  z  e.  B ) )
2 nfcv 2339 . . . . . 6  |-  F/_ y
x
3 nfdisjv.1 . . . . . 6  |-  F/_ y A
42, 3nfel 2348 . . . . 5  |-  F/ y  x  e.  A
5 nfdisjv.2 . . . . . 6  |-  F/_ y B
65nfcri 2333 . . . . 5  |-  F/ y  z  e.  B
74, 6nfan 1579 . . . 4  |-  F/ y ( x  e.  A  /\  z  e.  B
)
87nfmo 2065 . . 3  |-  F/ y E* x ( x  e.  A  /\  z  e.  B )
98nfal 1590 . 2  |-  F/ y A. z E* x
( x  e.  A  /\  z  e.  B
)
101, 9nfxfr 1488 1  |-  F/ yDisj  x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1362   F/wnf 1474   E*wmo 2046    e. wcel 2167   F/_wnfc 2326  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rmo 2483  df-disj 4011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator