ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisjv Unicode version

Theorem nfdisjv 4071
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypotheses
Ref Expression
nfdisjv.1  |-  F/_ y A
nfdisjv.2  |-  F/_ y B
Assertion
Ref Expression
nfdisjv  |-  F/ yDisj  x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfdisjv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4061 . 2  |-  (Disj  x  e.  A  B  <->  A. z E* x ( x  e.  A  /\  z  e.  B ) )
2 nfcv 2372 . . . . . 6  |-  F/_ y
x
3 nfdisjv.1 . . . . . 6  |-  F/_ y A
42, 3nfel 2381 . . . . 5  |-  F/ y  x  e.  A
5 nfdisjv.2 . . . . . 6  |-  F/_ y B
65nfcri 2366 . . . . 5  |-  F/ y  z  e.  B
74, 6nfan 1611 . . . 4  |-  F/ y ( x  e.  A  /\  z  e.  B
)
87nfmo 2097 . . 3  |-  F/ y E* x ( x  e.  A  /\  z  e.  B )
98nfal 1622 . 2  |-  F/ y A. z E* x
( x  e.  A  /\  z  e.  B
)
101, 9nfxfr 1520 1  |-  F/ yDisj  x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1393   F/wnf 1506   E*wmo 2078    e. wcel 2200   F/_wnfc 2359  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rmo 2516  df-disj 4060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator