Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > invdisj | Unicode version |
Description: If there is a function such that for all , then the sets for distinct are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
invdisj | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra2xy 2512 | . . 3 | |
2 | df-ral 2453 | . . . . 5 | |
3 | rsp 2517 | . . . . . . . . 9 | |
4 | eqcom 2172 | . . . . . . . . 9 | |
5 | 3, 4 | syl6ib 160 | . . . . . . . 8 |
6 | 5 | imim2i 12 | . . . . . . 7 |
7 | 6 | impd 252 | . . . . . 6 |
8 | 7 | alimi 1448 | . . . . 5 |
9 | 2, 8 | sylbi 120 | . . . 4 |
10 | mo2icl 2909 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | 1, 11 | alrimi 1515 | . 2 |
13 | dfdisj2 3968 | . 2 Disj | |
14 | 12, 13 | sylibr 133 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wmo 2020 wcel 2141 wral 2448 Disj wdisj 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rmo 2456 df-v 2732 df-disj 3967 |
This theorem is referenced by: phisum 12194 |
Copyright terms: Public domain | W3C validator |