| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invdisj | Unicode version | ||
| Description: If there is a function
|
| Ref | Expression |
|---|---|
| invdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2xy 2548 |
. . 3
| |
| 2 | df-ral 2489 |
. . . . 5
| |
| 3 | rsp 2553 |
. . . . . . . . 9
| |
| 4 | eqcom 2207 |
. . . . . . . . 9
| |
| 5 | 3, 4 | imbitrdi 161 |
. . . . . . . 8
|
| 6 | 5 | imim2i 12 |
. . . . . . 7
|
| 7 | 6 | impd 254 |
. . . . . 6
|
| 8 | 7 | alimi 1478 |
. . . . 5
|
| 9 | 2, 8 | sylbi 121 |
. . . 4
|
| 10 | mo2icl 2952 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 1, 11 | alrimi 1545 |
. 2
|
| 13 | dfdisj2 4023 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rmo 2492 df-v 2774 df-disj 4022 |
| This theorem is referenced by: phisum 12563 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |