| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invdisj | Unicode version | ||
| Description: If there is a function
|
| Ref | Expression |
|---|---|
| invdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2xy 2572 |
. . 3
| |
| 2 | df-ral 2513 |
. . . . 5
| |
| 3 | rsp 2577 |
. . . . . . . . 9
| |
| 4 | eqcom 2231 |
. . . . . . . . 9
| |
| 5 | 3, 4 | imbitrdi 161 |
. . . . . . . 8
|
| 6 | 5 | imim2i 12 |
. . . . . . 7
|
| 7 | 6 | impd 254 |
. . . . . 6
|
| 8 | 7 | alimi 1501 |
. . . . 5
|
| 9 | 2, 8 | sylbi 121 |
. . . 4
|
| 10 | mo2icl 2982 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 1, 11 | alrimi 1568 |
. 2
|
| 13 | dfdisj2 4061 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rmo 2516 df-v 2801 df-disj 4060 |
| This theorem is referenced by: invdisjrab 4077 phisum 12763 lgsquadlem1 15756 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |