ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxsn Unicode version

Theorem disjxsn 4002
Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjxsn  |- Disj  x  e. 
{ A } B
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem disjxsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3983 . 2  |-  (Disj  x  e.  { A } B  <->  A. y E* x ( x  e.  { A }  /\  y  e.  B
) )
2 moeq 2913 . . 3  |-  E* x  x  =  A
3 elsni 3611 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 276 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  B
)  ->  x  =  A )
54moimi 2091 . . 3  |-  ( E* x  x  =  A  ->  E* x ( x  e.  { A }  /\  y  e.  B
) )
62, 5ax-mp 5 . 2  |-  E* x
( x  e.  { A }  /\  y  e.  B )
71, 6mpgbir 1453 1  |- Disj  x  e. 
{ A } B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E*wmo 2027    e. wcel 2148   {csn 3593  Disj wdisj 3981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rmo 2463  df-v 2740  df-sn 3599  df-disj 3982
This theorem is referenced by:  disjx0  4003
  Copyright terms: Public domain W3C validator