ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjxsn Unicode version

Theorem disjxsn 4016
Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjxsn  |- Disj  x  e. 
{ A } B
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem disjxsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3997 . 2  |-  (Disj  x  e.  { A } B  <->  A. y E* x ( x  e.  { A }  /\  y  e.  B
) )
2 moeq 2927 . . 3  |-  E* x  x  =  A
3 elsni 3625 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 276 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  B
)  ->  x  =  A )
54moimi 2103 . . 3  |-  ( E* x  x  =  A  ->  E* x ( x  e.  { A }  /\  y  e.  B
) )
62, 5ax-mp 5 . 2  |-  E* x
( x  e.  { A }  /\  y  e.  B )
71, 6mpgbir 1464 1  |- Disj  x  e. 
{ A } B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E*wmo 2039    e. wcel 2160   {csn 3607  Disj wdisj 3995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rmo 2476  df-v 2754  df-sn 3613  df-disj 3996
This theorem is referenced by:  disjx0  4017
  Copyright terms: Public domain W3C validator