ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 3871
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj  |- Disj  x  e.  A  { x }

Proof of Theorem sndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3854 . 2  |-  (Disj  x  e.  A  { x } 
<-> 
A. y E* x
( x  e.  A  /\  y  e.  { x } ) )
2 moeq 2812 . . 3  |-  E* x  x  =  y
3 simpr 109 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  e.  { x } )
4 velsn 3491 . . . . . 6  |-  ( y  e.  { x }  <->  y  =  x )
53, 4sylib 121 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  =  x )
65eqcomd 2105 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  x  =  y )
76moimi 2025 . . 3  |-  ( E* x  x  =  y  ->  E* x ( x  e.  A  /\  y  e.  { x } ) )
82, 7ax-mp 7 . 2  |-  E* x
( x  e.  A  /\  y  e.  { x } )
91, 8mpgbir 1397 1  |- Disj  x  e.  A  { x }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 1448   E*wmo 1961   {csn 3474  Disj wdisj 3852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rmo 2383  df-v 2643  df-sn 3480  df-disj 3853
This theorem is referenced by:  0disj  3872  disjsnxp  6064
  Copyright terms: Public domain W3C validator