ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 3985
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj  |- Disj  x  e.  A  { x }

Proof of Theorem sndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3968 . 2  |-  (Disj  x  e.  A  { x } 
<-> 
A. y E* x
( x  e.  A  /\  y  e.  { x } ) )
2 moeq 2905 . . 3  |-  E* x  x  =  y
3 simpr 109 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  e.  { x } )
4 velsn 3600 . . . . . 6  |-  ( y  e.  { x }  <->  y  =  x )
53, 4sylib 121 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  =  x )
65eqcomd 2176 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  x  =  y )
76moimi 2084 . . 3  |-  ( E* x  x  =  y  ->  E* x ( x  e.  A  /\  y  e.  { x } ) )
82, 7ax-mp 5 . 2  |-  E* x
( x  e.  A  /\  y  e.  { x } )
91, 8mpgbir 1446 1  |- Disj  x  e.  A  { x }
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E*wmo 2020    e. wcel 2141   {csn 3583  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rmo 2456  df-v 2732  df-sn 3589  df-disj 3967
This theorem is referenced by:  0disj  3986  disjsnxp  6216
  Copyright terms: Public domain W3C validator