ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 3978
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj  |- Disj  x  e.  A  { x }

Proof of Theorem sndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3961 . 2  |-  (Disj  x  e.  A  { x } 
<-> 
A. y E* x
( x  e.  A  /\  y  e.  { x } ) )
2 moeq 2901 . . 3  |-  E* x  x  =  y
3 simpr 109 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  e.  { x } )
4 velsn 3593 . . . . . 6  |-  ( y  e.  { x }  <->  y  =  x )
53, 4sylib 121 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  =  x )
65eqcomd 2171 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  x  =  y )
76moimi 2079 . . 3  |-  ( E* x  x  =  y  ->  E* x ( x  e.  A  /\  y  e.  { x } ) )
82, 7ax-mp 5 . 2  |-  E* x
( x  e.  A  /\  y  e.  { x } )
91, 8mpgbir 1441 1  |- Disj  x  e.  A  { x }
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E*wmo 2015    e. wcel 2136   {csn 3576  Disj wdisj 3959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rmo 2452  df-v 2728  df-sn 3582  df-disj 3960
This theorem is referenced by:  0disj  3979  disjsnxp  6205
  Copyright terms: Public domain W3C validator