ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 4025
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj  |- Disj  x  e.  A  { x }

Proof of Theorem sndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4008 . 2  |-  (Disj  x  e.  A  { x } 
<-> 
A. y E* x
( x  e.  A  /\  y  e.  { x } ) )
2 moeq 2935 . . 3  |-  E* x  x  =  y
3 simpr 110 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  e.  { x } )
4 velsn 3635 . . . . . 6  |-  ( y  e.  { x }  <->  y  =  x )
53, 4sylib 122 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  =  x )
65eqcomd 2199 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  x  =  y )
76moimi 2107 . . 3  |-  ( E* x  x  =  y  ->  E* x ( x  e.  A  /\  y  e.  { x } ) )
82, 7ax-mp 5 . 2  |-  E* x
( x  e.  A  /\  y  e.  { x } )
91, 8mpgbir 1464 1  |- Disj  x  e.  A  { x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E*wmo 2043    e. wcel 2164   {csn 3618  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rmo 2480  df-v 2762  df-sn 3624  df-disj 4007
This theorem is referenced by:  0disj  4026  disjsnxp  6290
  Copyright terms: Public domain W3C validator