Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 3925
 Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj

Proof of Theorem sndisj
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 3908 . 2 Disj
2 moeq 2859 . . 3
3 simpr 109 . . . . . 6
4 velsn 3544 . . . . . 6
53, 4sylib 121 . . . . 5
65eqcomd 2145 . . . 4
76moimi 2064 . . 3
82, 7ax-mp 5 . 2
91, 8mpgbir 1429 1 Disj
 Colors of variables: wff set class Syntax hints:   wa 103   wcel 1480  wmo 2000  csn 3527  Disj wdisj 3906 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rmo 2424  df-v 2688  df-sn 3533  df-disj 3907 This theorem is referenced by:  0disj  3926  disjsnxp  6134
 Copyright terms: Public domain W3C validator