ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sndisj Unicode version

Theorem sndisj 4029
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj  |- Disj  x  e.  A  { x }

Proof of Theorem sndisj
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4012 . 2  |-  (Disj  x  e.  A  { x } 
<-> 
A. y E* x
( x  e.  A  /\  y  e.  { x } ) )
2 moeq 2939 . . 3  |-  E* x  x  =  y
3 simpr 110 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  e.  { x } )
4 velsn 3639 . . . . . 6  |-  ( y  e.  { x }  <->  y  =  x )
53, 4sylib 122 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  y  =  x )
65eqcomd 2202 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { x } )  ->  x  =  y )
76moimi 2110 . . 3  |-  ( E* x  x  =  y  ->  E* x ( x  e.  A  /\  y  e.  { x } ) )
82, 7ax-mp 5 . 2  |-  E* x
( x  e.  A  /\  y  e.  { x } )
91, 8mpgbir 1467 1  |- Disj  x  e.  A  { x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E*wmo 2046    e. wcel 2167   {csn 3622  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rmo 2483  df-v 2765  df-sn 3628  df-disj 4011
This theorem is referenced by:  0disj  4030  disjsnxp  6295
  Copyright terms: Public domain W3C validator