ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 Unicode version

Theorem disjss1 3998
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3161 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 336 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  C
)  ->  ( x  e.  B  /\  y  e.  C ) ) )
32alrimiv 1884 . . . 4  |-  ( A 
C_  B  ->  A. x
( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
) )
4 moim 2100 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
)  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
53, 4syl 14 . . 3  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
65alimdv 1889 . 2  |-  ( A 
C_  B  ->  ( A. y E* x ( x  e.  B  /\  y  e.  C )  ->  A. y E* x
( x  e.  A  /\  y  e.  C
) ) )
7 dfdisj2 3994 . 2  |-  (Disj  x  e.  B  C  <->  A. y E* x ( x  e.  B  /\  y  e.  C ) )
8 dfdisj2 3994 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x ( x  e.  A  /\  y  e.  C ) )
96, 7, 83imtr4g 205 1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1361   E*wmo 2037    e. wcel 2158    C_ wss 3141  Disj wdisj 3992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-rmo 2473  df-in 3147  df-ss 3154  df-disj 3993
This theorem is referenced by:  disjeq1  3999  disjx0  4014  fsumiun  11499
  Copyright terms: Public domain W3C validator