ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 Unicode version

Theorem disjss1 3988
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3151 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 336 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  C
)  ->  ( x  e.  B  /\  y  e.  C ) ) )
32alrimiv 1874 . . . 4  |-  ( A 
C_  B  ->  A. x
( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
) )
4 moim 2090 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
)  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
53, 4syl 14 . . 3  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
65alimdv 1879 . 2  |-  ( A 
C_  B  ->  ( A. y E* x ( x  e.  B  /\  y  e.  C )  ->  A. y E* x
( x  e.  A  /\  y  e.  C
) ) )
7 dfdisj2 3984 . 2  |-  (Disj  x  e.  B  C  <->  A. y E* x ( x  e.  B  /\  y  e.  C ) )
8 dfdisj2 3984 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x ( x  e.  A  /\  y  e.  C ) )
96, 7, 83imtr4g 205 1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E*wmo 2027    e. wcel 2148    C_ wss 3131  Disj wdisj 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-rmo 2463  df-in 3137  df-ss 3144  df-disj 3983
This theorem is referenced by:  disjeq1  3989  disjx0  4004  fsumiun  11487
  Copyright terms: Public domain W3C validator