Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjss1 | Unicode version |
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss1 | Disj Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . 6 | |
2 | 1 | anim1d 334 | . . . . 5 |
3 | 2 | alrimiv 1867 | . . . 4 |
4 | moim 2083 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | 5 | alimdv 1872 | . 2 |
7 | dfdisj2 3968 | . 2 Disj | |
8 | dfdisj2 3968 | . 2 Disj | |
9 | 6, 7, 8 | 3imtr4g 204 | 1 Disj Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wmo 2020 wcel 2141 wss 3121 Disj wdisj 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-rmo 2456 df-in 3127 df-ss 3134 df-disj 3967 |
This theorem is referenced by: disjeq1 3973 disjx0 3988 fsumiun 11440 |
Copyright terms: Public domain | W3C validator |