ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss1 Unicode version

Theorem disjss1 4065
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 336 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  C
)  ->  ( x  e.  B  /\  y  e.  C ) ) )
32alrimiv 1920 . . . 4  |-  ( A 
C_  B  ->  A. x
( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
) )
4 moim 2142 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
)  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
53, 4syl 14 . . 3  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
65alimdv 1925 . 2  |-  ( A 
C_  B  ->  ( A. y E* x ( x  e.  B  /\  y  e.  C )  ->  A. y E* x
( x  e.  A  /\  y  e.  C
) ) )
7 dfdisj2 4061 . 2  |-  (Disj  x  e.  B  C  <->  A. y E* x ( x  e.  B  /\  y  e.  C ) )
8 dfdisj2 4061 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x ( x  e.  A  /\  y  e.  C ) )
96, 7, 83imtr4g 205 1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393   E*wmo 2078    e. wcel 2200    C_ wss 3197  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-rmo 2516  df-in 3203  df-ss 3210  df-disj 4060
This theorem is referenced by:  disjeq1  4066  disjx0  4082  fsumiun  11988
  Copyright terms: Public domain W3C validator