Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fifo | Unicode version |
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fifo.1 |
Ref | Expression |
---|---|
fifo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3705 | . . . . . . 7 | |
2 | eldifi 3244 | . . . . . . . . 9 | |
3 | 2 | elin2d 3312 | . . . . . . . 8 |
4 | fin0 6851 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 1, 5 | mpbid 146 | . . . . . 6 |
7 | inteximm 4128 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | 8 | rgen 2519 | . . . 4 |
10 | fifo.1 | . . . . 5 | |
11 | 10 | fnmpt 5314 | . . . 4 |
12 | 9, 11 | mp1i 10 | . . 3 |
13 | dffn4 5416 | . . 3 | |
14 | 12, 13 | sylib 121 | . 2 |
15 | elfi2 6937 | . . . . 5 | |
16 | 10 | elrnmpt 4853 | . . . . . 6 |
17 | 16 | elv 2730 | . . . . 5 |
18 | 15, 17 | bitr4di 197 | . . . 4 |
19 | 18 | eqrdv 2163 | . . 3 |
20 | foeq3 5408 | . . 3 | |
21 | 19, 20 | syl 14 | . 2 |
22 | 14, 21 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 wne 2336 wral 2444 wrex 2445 cvv 2726 cdif 3113 cin 3115 c0 3409 cpw 3559 csn 3576 cint 3824 cmpt 4043 crn 4605 wfn 5183 wfo 5186 cfv 5188 cfn 6706 cfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |