ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fifo Unicode version

Theorem fifo 7039
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
Assertion
Ref Expression
fifo  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Distinct variable groups:    y, A    y, V
Allowed substitution hint:    F( y)

Proof of Theorem fifo
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsni 3747 . . . . . . 7  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
2 eldifi 3281 . . . . . . . . 9  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  e.  ( ~P A  i^i  Fin )
)
32elin2d 3349 . . . . . . . 8  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  e.  Fin )
4 fin0 6941 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
y  =/=  (/)  <->  E. w  w  e.  y )
)
53, 4syl 14 . . . . . . 7  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
( y  =/=  (/)  <->  E. w  w  e.  y )
)
61, 5mpbid 147 . . . . . 6  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  E. w  w  e.  y )
7 inteximm 4178 . . . . . 6  |-  ( E. w  w  e.  y  ->  |^| y  e.  _V )
86, 7syl 14 . . . . 5  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  |^| y  e.  _V )
98rgen 2547 . . . 4  |-  A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) |^| y  e.  _V
10 fifo.1 . . . . 5  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
1110fnmpt 5380 . . . 4  |-  ( A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) |^| y  e.  _V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } ) )
129, 11mp1i 10 . . 3  |-  ( A  e.  V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/)
} ) )
13 dffn4 5482 . . 3  |-  ( F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
)
1412, 13sylib 122 . 2  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ran 
F )
15 elfi2 7031 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y ) )
1610elrnmpt 4911 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) x  =  |^| y
) )
1716elv 2764 . . . . 5  |-  ( x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y )
1815, 17bitr4di 198 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  x  e.  ran  F ) )
1918eqrdv 2191 . . 3  |-  ( A  e.  V  ->  ( fi `  A )  =  ran  F )
20 foeq3 5474 . . 3  |-  ( ( fi `  A )  =  ran  F  -> 
( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
) )
2119, 20syl 14 . 2  |-  ( A  e.  V  ->  ( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <-> 
F : ( ( ~P A  i^i  Fin )  \  { (/) } )
-onto->
ran  F ) )
2214, 21mpbird 167 1  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473   _Vcvv 2760    \ cdif 3150    i^i cin 3152   (/)c0 3446   ~Pcpw 3601   {csn 3618   |^|cint 3870    |-> cmpt 4090   ran crn 4660    Fn wfn 5249   -onto->wfo 5252   ` cfv 5254   Fincfn 6794   ficfi 7027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-fin 6797  df-fi 7028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator