ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fifo Unicode version

Theorem fifo 7143
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
Assertion
Ref Expression
fifo  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Distinct variable groups:    y, A    y, V
Allowed substitution hint:    F( y)

Proof of Theorem fifo
Dummy variables  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsni 3796 . . . . . . 7  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
2 eldifi 3326 . . . . . . . . 9  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  e.  ( ~P A  i^i  Fin )
)
32elin2d 3394 . . . . . . . 8  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  e.  Fin )
4 fin0 7043 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
y  =/=  (/)  <->  E. w  w  e.  y )
)
53, 4syl 14 . . . . . . 7  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
( y  =/=  (/)  <->  E. w  w  e.  y )
)
61, 5mpbid 147 . . . . . 6  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  E. w  w  e.  y )
7 inteximm 4232 . . . . . 6  |-  ( E. w  w  e.  y  ->  |^| y  e.  _V )
86, 7syl 14 . . . . 5  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  |^| y  e.  _V )
98rgen 2583 . . . 4  |-  A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) |^| y  e.  _V
10 fifo.1 . . . . 5  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
1110fnmpt 5449 . . . 4  |-  ( A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) |^| y  e.  _V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } ) )
129, 11mp1i 10 . . 3  |-  ( A  e.  V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/)
} ) )
13 dffn4 5553 . . 3  |-  ( F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
)
1412, 13sylib 122 . 2  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ran 
F )
15 elfi2 7135 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y ) )
1610elrnmpt 4972 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) x  =  |^| y
) )
1716elv 2803 . . . . 5  |-  ( x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y )
1815, 17bitr4di 198 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  x  e.  ran  F ) )
1918eqrdv 2227 . . 3  |-  ( A  e.  V  ->  ( fi `  A )  =  ran  F )
20 foeq3 5545 . . 3  |-  ( ( fi `  A )  =  ran  F  -> 
( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
) )
2119, 20syl 14 . 2  |-  ( A  e.  V  ->  ( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <-> 
F : ( ( ~P A  i^i  Fin )  \  { (/) } )
-onto->
ran  F ) )
2214, 21mpbird 167 1  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509   _Vcvv 2799    \ cdif 3194    i^i cin 3196   (/)c0 3491   ~Pcpw 3649   {csn 3666   |^|cint 3922    |-> cmpt 4144   ran crn 4719    Fn wfn 5312   -onto->wfo 5315   ` cfv 5317   Fincfn 6885   ficfi 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888  df-fi 7132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator