ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf2 Unicode version

Theorem tposf2 6259
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )

Proof of Theorem tposf2
StepHypRef Expression
1 ffn 5357 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn4 5436 . . . . . . 7  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
31, 2sylib 122 . . . . . 6  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
4 tposfo2 6258 . . . . . 6  |-  ( Rel 
A  ->  ( F : A -onto-> ran  F  -> tpos  F : `' A -onto-> ran  F ) )
53, 4syl5 32 . . . . 5  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A -onto-> ran  F ) )
65imp 124 . . . 4  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A -onto-> ran  F )
7 fof 5430 . . . 4  |-  (tpos  F : `' A -onto-> ran  F  -> tpos  F : `' A --> ran  F )
86, 7syl 14 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> ran  F
)
9 frn 5366 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
109adantl 277 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  ->  ran  F  C_  B )
11 fss 5369 . . 3  |-  ( (tpos 
F : `' A --> ran  F  /\  ran  F  C_  B )  -> tpos  F : `' A --> B )
128, 10, 11syl2anc 411 . 2  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> B )
1312ex 115 1  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3127   `'ccnv 4619   ran crn 4621   Rel wrel 4625    Fn wfn 5203   -->wf 5204   -onto->wfo 5206  tpos ctpos 6235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fo 5214  df-fv 5216  df-tpos 6236
This theorem is referenced by:  tposf  6263
  Copyright terms: Public domain W3C validator