ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf2 Unicode version

Theorem tposf2 6326
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )

Proof of Theorem tposf2
StepHypRef Expression
1 ffn 5407 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn4 5486 . . . . . . 7  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
31, 2sylib 122 . . . . . 6  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
4 tposfo2 6325 . . . . . 6  |-  ( Rel 
A  ->  ( F : A -onto-> ran  F  -> tpos  F : `' A -onto-> ran  F ) )
53, 4syl5 32 . . . . 5  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A -onto-> ran  F ) )
65imp 124 . . . 4  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A -onto-> ran  F )
7 fof 5480 . . . 4  |-  (tpos  F : `' A -onto-> ran  F  -> tpos  F : `' A --> ran  F )
86, 7syl 14 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> ran  F
)
9 frn 5416 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
109adantl 277 . . 3  |-  ( ( Rel  A  /\  F : A --> B )  ->  ran  F  C_  B )
11 fss 5419 . . 3  |-  ( (tpos 
F : `' A --> ran  F  /\  ran  F  C_  B )  -> tpos  F : `' A --> B )
128, 10, 11syl2anc 411 . 2  |-  ( ( Rel  A  /\  F : A --> B )  -> tpos  F : `' A --> B )
1312ex 115 1  |-  ( Rel 
A  ->  ( F : A --> B  -> tpos  F : `' A --> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3157   `'ccnv 4662   ran crn 4664   Rel wrel 4668    Fn wfn 5253   -->wf 5254   -onto->wfo 5256  tpos ctpos 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-tpos 6303
This theorem is referenced by:  tposf  6330
  Copyright terms: Public domain W3C validator