Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsn | Unicode version |
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
map0.1 | |
map0.2 |
Ref | Expression |
---|---|
mapsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | map0.1 | . . . 4 | |
2 | map0.2 | . . . . 5 | |
3 | 2 | snex 4164 | . . . 4 |
4 | 1, 3 | elmap 6643 | . . 3 |
5 | ffn 5337 | . . . . . . . 8 | |
6 | 2 | snid 3607 | . . . . . . . 8 |
7 | fneu 5292 | . . . . . . . 8 | |
8 | 5, 6, 7 | sylancl 410 | . . . . . . 7 |
9 | euabsn 3646 | . . . . . . . 8 | |
10 | imasng 4969 | . . . . . . . . . . . 12 | |
11 | 2, 10 | ax-mp 5 | . . . . . . . . . . 11 |
12 | fdm 5343 | . . . . . . . . . . . . 13 | |
13 | 12 | imaeq2d 4946 | . . . . . . . . . . . 12 |
14 | imadmrn 4956 | . . . . . . . . . . . 12 | |
15 | 13, 14 | eqtr3di 2214 | . . . . . . . . . . 11 |
16 | 11, 15 | eqtr3id 2213 | . . . . . . . . . 10 |
17 | 16 | eqeq1d 2174 | . . . . . . . . 9 |
18 | 17 | exbidv 1813 | . . . . . . . 8 |
19 | 9, 18 | syl5bb 191 | . . . . . . 7 |
20 | 8, 19 | mpbid 146 | . . . . . 6 |
21 | vex 2729 | . . . . . . . . . . 11 | |
22 | 21 | snid 3607 | . . . . . . . . . 10 |
23 | eleq2 2230 | . . . . . . . . . 10 | |
24 | 22, 23 | mpbiri 167 | . . . . . . . . 9 |
25 | frn 5346 | . . . . . . . . . 10 | |
26 | 25 | sseld 3141 | . . . . . . . . 9 |
27 | 24, 26 | syl5 32 | . . . . . . . 8 |
28 | dffn4 5416 | . . . . . . . . . . . 12 | |
29 | 5, 28 | sylib 121 | . . . . . . . . . . 11 |
30 | fof 5410 | . . . . . . . . . . 11 | |
31 | 29, 30 | syl 14 | . . . . . . . . . 10 |
32 | feq3 5322 | . . . . . . . . . 10 | |
33 | 31, 32 | syl5ibcom 154 | . . . . . . . . 9 |
34 | 2, 21 | fsn 5657 | . . . . . . . . 9 |
35 | 33, 34 | syl6ib 160 | . . . . . . . 8 |
36 | 27, 35 | jcad 305 | . . . . . . 7 |
37 | 36 | eximdv 1868 | . . . . . 6 |
38 | 20, 37 | mpd 13 | . . . . 5 |
39 | df-rex 2450 | . . . . 5 | |
40 | 38, 39 | sylibr 133 | . . . 4 |
41 | 2, 21 | f1osn 5472 | . . . . . . . . 9 |
42 | f1oeq1 5421 | . . . . . . . . 9 | |
43 | 41, 42 | mpbiri 167 | . . . . . . . 8 |
44 | f1of 5432 | . . . . . . . 8 | |
45 | 43, 44 | syl 14 | . . . . . . 7 |
46 | snssi 3717 | . . . . . . 7 | |
47 | fss 5349 | . . . . . . 7 | |
48 | 45, 46, 47 | syl2an 287 | . . . . . 6 |
49 | 48 | expcom 115 | . . . . 5 |
50 | 49 | rexlimiv 2577 | . . . 4 |
51 | 40, 50 | impbii 125 | . . 3 |
52 | 4, 51 | bitri 183 | . 2 |
53 | 52 | abbi2i 2281 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 weu 2014 wcel 2136 cab 2151 wrex 2445 cvv 2726 wss 3116 csn 3576 cop 3579 class class class wbr 3982 cdm 4604 crn 4605 cima 4607 wfn 5183 wf 5184 wfo 5186 wf1o 5187 (class class class)co 5842 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: mapsnen 6777 |
Copyright terms: Public domain | W3C validator |