ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn Unicode version

Theorem mapsn 6427
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1  |-  A  e. 
_V
map0.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsn  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Distinct variable groups:    y, f, A    B, f, y

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4  |-  A  e. 
_V
2 map0.2 . . . . 5  |-  B  e. 
_V
32snex 4011 . . . 4  |-  { B }  e.  _V
41, 3elmap 6414 . . 3  |-  ( f  e.  ( A  ^m  { B } )  <->  f : { B } --> A )
5 ffn 5147 . . . . . . . 8  |-  ( f : { B } --> A  ->  f  Fn  { B } )
62snid 3470 . . . . . . . 8  |-  B  e. 
{ B }
7 fneu 5104 . . . . . . . 8  |-  ( ( f  Fn  { B }  /\  B  e.  { B } )  ->  E! y  B f y )
85, 6, 7sylancl 404 . . . . . . 7  |-  ( f : { B } --> A  ->  E! y  B f y )
9 euabsn 3507 . . . . . . . 8  |-  ( E! y  B f y  <->  E. y { y  |  B f y }  =  { y } )
10 imasng 4784 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  (
f " { B } )  =  {
y  |  B f y } )
112, 10ax-mp 7 . . . . . . . . . . 11  |-  ( f
" { B }
)  =  { y  |  B f y }
12 imadmrn 4771 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
13 fdm 5152 . . . . . . . . . . . . 13  |-  ( f : { B } --> A  ->  dom  f  =  { B } )
1413imaeq2d 4761 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  ( f " dom  f )  =  ( f " { B } ) )
1512, 14syl5reqr 2135 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  ran  f )
1611, 15syl5eqr 2134 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  { y  |  B f y }  =  ran  f )
1716eqeq1d 2096 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( { y  |  B f y }  =  { y }  <->  ran  f  =  {
y } ) )
1817exbidv 1753 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( E. y { y  |  B
f y }  =  { y }  <->  E. y ran  f  =  {
y } ) )
199, 18syl5bb 190 . . . . . . 7  |-  ( f : { B } --> A  ->  ( E! y  B f y  <->  E. y ran  f  =  {
y } ) )
208, 19mpbid 145 . . . . . 6  |-  ( f : { B } --> A  ->  E. y ran  f  =  { y } )
21 vex 2622 . . . . . . . . . . 11  |-  y  e. 
_V
2221snid 3470 . . . . . . . . . 10  |-  y  e. 
{ y }
23 eleq2 2151 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( y  e.  ran  f  <->  y  e.  { y } ) )
2422, 23mpbiri 166 . . . . . . . . 9  |-  ( ran  f  =  { y }  ->  y  e.  ran  f )
25 frn 5155 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  ran  f  C_  A )
2625sseld 3022 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( y  e. 
ran  f  ->  y  e.  A ) )
2724, 26syl5 32 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  y  e.  A ) )
28 dffn4 5223 . . . . . . . . . . . 12  |-  ( f  Fn  { B }  <->  f : { B } -onto-> ran  f )
295, 28sylib 120 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  f : { B } -onto-> ran  f )
30 fof 5217 . . . . . . . . . . 11  |-  ( f : { B } -onto-> ran  f  ->  f : { B } --> ran  f
)
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  f : { B } --> ran  f )
32 feq3 5133 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( f : { B } --> ran  f  <->  f : { B } --> { y } ) )
3331, 32syl5ibcom 153 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f : { B } --> { y } ) )
342, 21fsn 5453 . . . . . . . . 9  |-  ( f : { B } --> { y }  <->  f  =  { <. B ,  y
>. } )
3533, 34syl6ib 159 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f  =  { <. B , 
y >. } ) )
3627, 35jcad 301 . . . . . . 7  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  ( y  e.  A  /\  f  =  { <. B , 
y >. } ) ) )
3736eximdv 1808 . . . . . 6  |-  ( f : { B } --> A  ->  ( E. y ran  f  =  {
y }  ->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) ) )
3820, 37mpd 13 . . . . 5  |-  ( f : { B } --> A  ->  E. y ( y  e.  A  /\  f  =  { <. B ,  y
>. } ) )
39 df-rex 2365 . . . . 5  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  <->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) )
4038, 39sylibr 132 . . . 4  |-  ( f : { B } --> A  ->  E. y  e.  A  f  =  { <. B , 
y >. } )
412, 21f1osn 5277 . . . . . . . . 9  |-  { <. B ,  y >. } : { B } -1-1-onto-> { y }
42 f1oeq1 5228 . . . . . . . . 9  |-  ( f  =  { <. B , 
y >. }  ->  (
f : { B }
-1-1-onto-> { y }  <->  { <. B , 
y >. } : { B } -1-1-onto-> { y } ) )
4341, 42mpbiri 166 . . . . . . . 8  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } -1-1-onto-> { y } )
44 f1of 5237 . . . . . . . 8  |-  ( f : { B } -1-1-onto-> {
y }  ->  f : { B } --> { y } )
4543, 44syl 14 . . . . . . 7  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } --> { y } )
46 snssi 3576 . . . . . . 7  |-  ( y  e.  A  ->  { y }  C_  A )
47 fss 5157 . . . . . . 7  |-  ( ( f : { B }
--> { y }  /\  { y }  C_  A
)  ->  f : { B } --> A )
4845, 46, 47syl2an 283 . . . . . 6  |-  ( ( f  =  { <. B ,  y >. }  /\  y  e.  A )  ->  f : { B }
--> A )
4948expcom 114 . . . . 5  |-  ( y  e.  A  ->  (
f  =  { <. B ,  y >. }  ->  f : { B } --> A ) )
5049rexlimiv 2483 . . . 4  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  ->  f : { B } --> A )
5140, 50impbii 124 . . 3  |-  ( f : { B } --> A 
<->  E. y  e.  A  f  =  { <. B , 
y >. } )
524, 51bitri 182 . 2  |-  ( f  e.  ( A  ^m  { B } )  <->  E. y  e.  A  f  =  { <. B ,  y
>. } )
5352abbi2i 2202 1  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   E!weu 1948   {cab 2074   E.wrex 2360   _Vcvv 2619    C_ wss 2997   {csn 3441   <.cop 3444   class class class wbr 3837   dom cdm 4428   ran crn 4429   "cima 4431    Fn wfn 4997   -->wf 4998   -onto->wfo 5000   -1-1-onto->wf1o 5001  (class class class)co 5634    ^m cmap 6385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-map 6387
This theorem is referenced by:  mapsnen  6508
  Copyright terms: Public domain W3C validator