| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsn | Unicode version | ||
| Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| map0.1 |
|
| map0.2 |
|
| Ref | Expression |
|---|---|
| mapsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0.1 |
. . . 4
| |
| 2 | map0.2 |
. . . . 5
| |
| 3 | 2 | snex 4245 |
. . . 4
|
| 4 | 1, 3 | elmap 6787 |
. . 3
|
| 5 | ffn 5445 |
. . . . . . . 8
| |
| 6 | 2 | snid 3674 |
. . . . . . . 8
|
| 7 | fneu 5399 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | sylancl 413 |
. . . . . . 7
|
| 9 | euabsn 3713 |
. . . . . . . 8
| |
| 10 | imasng 5066 |
. . . . . . . . . . . 12
| |
| 11 | 2, 10 | ax-mp 5 |
. . . . . . . . . . 11
|
| 12 | fdm 5451 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | imaeq2d 5041 |
. . . . . . . . . . . 12
|
| 14 | imadmrn 5051 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqtr3di 2255 |
. . . . . . . . . . 11
|
| 16 | 11, 15 | eqtr3id 2254 |
. . . . . . . . . 10
|
| 17 | 16 | eqeq1d 2216 |
. . . . . . . . 9
|
| 18 | 17 | exbidv 1849 |
. . . . . . . 8
|
| 19 | 9, 18 | bitrid 192 |
. . . . . . 7
|
| 20 | 8, 19 | mpbid 147 |
. . . . . 6
|
| 21 | vex 2779 |
. . . . . . . . . . 11
| |
| 22 | 21 | snid 3674 |
. . . . . . . . . 10
|
| 23 | eleq2 2271 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | mpbiri 168 |
. . . . . . . . 9
|
| 25 | frn 5454 |
. . . . . . . . . 10
| |
| 26 | 25 | sseld 3200 |
. . . . . . . . 9
|
| 27 | 24, 26 | syl5 32 |
. . . . . . . 8
|
| 28 | dffn4 5526 |
. . . . . . . . . . . 12
| |
| 29 | 5, 28 | sylib 122 |
. . . . . . . . . . 11
|
| 30 | fof 5520 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | feq3 5430 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl5ibcom 155 |
. . . . . . . . 9
|
| 34 | 2, 21 | fsn 5775 |
. . . . . . . . 9
|
| 35 | 33, 34 | imbitrdi 161 |
. . . . . . . 8
|
| 36 | 27, 35 | jcad 307 |
. . . . . . 7
|
| 37 | 36 | eximdv 1904 |
. . . . . 6
|
| 38 | 20, 37 | mpd 13 |
. . . . 5
|
| 39 | df-rex 2492 |
. . . . 5
| |
| 40 | 38, 39 | sylibr 134 |
. . . 4
|
| 41 | 2, 21 | f1osn 5585 |
. . . . . . . . 9
|
| 42 | f1oeq1 5532 |
. . . . . . . . 9
| |
| 43 | 41, 42 | mpbiri 168 |
. . . . . . . 8
|
| 44 | f1of 5544 |
. . . . . . . 8
| |
| 45 | 43, 44 | syl 14 |
. . . . . . 7
|
| 46 | snssi 3788 |
. . . . . . 7
| |
| 47 | fss 5457 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | syl2an 289 |
. . . . . 6
|
| 49 | 48 | expcom 116 |
. . . . 5
|
| 50 | 49 | rexlimiv 2619 |
. . . 4
|
| 51 | 40, 50 | impbii 126 |
. . 3
|
| 52 | 4, 51 | bitri 184 |
. 2
|
| 53 | 52 | abbi2i 2322 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 |
| This theorem is referenced by: mapsnen 6927 |
| Copyright terms: Public domain | W3C validator |