| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsn | Unicode version | ||
| Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| map0.1 |
|
| map0.2 |
|
| Ref | Expression |
|---|---|
| mapsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0.1 |
. . . 4
| |
| 2 | map0.2 |
. . . . 5
| |
| 3 | 2 | snex 4219 |
. . . 4
|
| 4 | 1, 3 | elmap 6745 |
. . 3
|
| 5 | ffn 5410 |
. . . . . . . 8
| |
| 6 | 2 | snid 3654 |
. . . . . . . 8
|
| 7 | fneu 5365 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | sylancl 413 |
. . . . . . 7
|
| 9 | euabsn 3693 |
. . . . . . . 8
| |
| 10 | imasng 5035 |
. . . . . . . . . . . 12
| |
| 11 | 2, 10 | ax-mp 5 |
. . . . . . . . . . 11
|
| 12 | fdm 5416 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | imaeq2d 5010 |
. . . . . . . . . . . 12
|
| 14 | imadmrn 5020 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqtr3di 2244 |
. . . . . . . . . . 11
|
| 16 | 11, 15 | eqtr3id 2243 |
. . . . . . . . . 10
|
| 17 | 16 | eqeq1d 2205 |
. . . . . . . . 9
|
| 18 | 17 | exbidv 1839 |
. . . . . . . 8
|
| 19 | 9, 18 | bitrid 192 |
. . . . . . 7
|
| 20 | 8, 19 | mpbid 147 |
. . . . . 6
|
| 21 | vex 2766 |
. . . . . . . . . . 11
| |
| 22 | 21 | snid 3654 |
. . . . . . . . . 10
|
| 23 | eleq2 2260 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | mpbiri 168 |
. . . . . . . . 9
|
| 25 | frn 5419 |
. . . . . . . . . 10
| |
| 26 | 25 | sseld 3183 |
. . . . . . . . 9
|
| 27 | 24, 26 | syl5 32 |
. . . . . . . 8
|
| 28 | dffn4 5489 |
. . . . . . . . . . . 12
| |
| 29 | 5, 28 | sylib 122 |
. . . . . . . . . . 11
|
| 30 | fof 5483 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | feq3 5395 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl5ibcom 155 |
. . . . . . . . 9
|
| 34 | 2, 21 | fsn 5737 |
. . . . . . . . 9
|
| 35 | 33, 34 | imbitrdi 161 |
. . . . . . . 8
|
| 36 | 27, 35 | jcad 307 |
. . . . . . 7
|
| 37 | 36 | eximdv 1894 |
. . . . . 6
|
| 38 | 20, 37 | mpd 13 |
. . . . 5
|
| 39 | df-rex 2481 |
. . . . 5
| |
| 40 | 38, 39 | sylibr 134 |
. . . 4
|
| 41 | 2, 21 | f1osn 5547 |
. . . . . . . . 9
|
| 42 | f1oeq1 5495 |
. . . . . . . . 9
| |
| 43 | 41, 42 | mpbiri 168 |
. . . . . . . 8
|
| 44 | f1of 5507 |
. . . . . . . 8
| |
| 45 | 43, 44 | syl 14 |
. . . . . . 7
|
| 46 | snssi 3767 |
. . . . . . 7
| |
| 47 | fss 5422 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | syl2an 289 |
. . . . . 6
|
| 49 | 48 | expcom 116 |
. . . . 5
|
| 50 | 49 | rexlimiv 2608 |
. . . 4
|
| 51 | 40, 50 | impbii 126 |
. . 3
|
| 52 | 4, 51 | bitri 184 |
. 2
|
| 53 | 52 | abbi2i 2311 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: mapsnen 6879 |
| Copyright terms: Public domain | W3C validator |