| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 |
|
| Ref | Expression |
|---|---|
| biantru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 947 isset 2806 rexcom4b 2825 eueq 2974 ssrabeq 3311 a9evsep 4206 pwunim 4377 elvv 4781 elvvv 4782 resopab 5049 funfn 5348 dffn2 5475 dffn3 5484 dffn4 5556 fsn 5809 ixp0x 6881 ac6sfi 7068 fimax2gtri 7071 nninfwlporlemd 7347 ccatrcan 11259 xrmaxiflemcom 11768 plyun0 15418 trirec0xor 16443 |
| Copyright terms: Public domain | W3C validator |