ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru Unicode version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1  |-  ph
Assertion
Ref Expression
biantru  |-  ( ps  <->  ( ps  /\  ph )
)

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2  |-  ph
2 iba 300 . 2  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  943  isset  2766  rexcom4b  2785  eueq  2932  ssrabeq  3267  a9evsep  4152  pwunim  4318  elvv  4722  elvvv  4723  resopab  4987  funfn  5285  dffn2  5406  dffn3  5415  dffn4  5483  fsn  5731  ixp0x  6782  ac6sfi  6956  fimax2gtri  6959  nninfwlporlemd  7233  xrmaxiflemcom  11395  plyun0  14915  trirec0xor  15605
  Copyright terms: Public domain W3C validator