ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru Unicode version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1  |-  ph
Assertion
Ref Expression
biantru  |-  ( ps  <->  ( ps  /\  ph )
)

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2  |-  ph
2 iba 300 . 2  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  947  isset  2806  rexcom4b  2825  eueq  2974  ssrabeq  3311  a9evsep  4206  pwunim  4377  elvv  4781  elvvv  4782  resopab  5049  funfn  5348  dffn2  5475  dffn3  5484  dffn4  5556  fsn  5809  ixp0x  6881  ac6sfi  7068  fimax2gtri  7071  nninfwlporlemd  7347  ccatrcan  11259  xrmaxiflemcom  11768  plyun0  15418  trirec0xor  16443
  Copyright terms: Public domain W3C validator