![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantru | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantru |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 |
. 2
![]() ![]() | |
2 | iba 300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.71 389 mpbiran2 943 isset 2766 rexcom4b 2785 eueq 2931 ssrabeq 3266 a9evsep 4151 pwunim 4317 elvv 4721 elvvv 4722 resopab 4986 funfn 5284 dffn2 5405 dffn3 5414 dffn4 5482 fsn 5730 ixp0x 6780 ac6sfi 6954 fimax2gtri 6957 nninfwlporlemd 7231 xrmaxiflemcom 11392 plyun0 14882 trirec0xor 15535 |
Copyright terms: Public domain | W3C validator |