| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 |
|
| Ref | Expression |
|---|---|
| biantru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 944 isset 2778 rexcom4b 2797 eueq 2944 ssrabeq 3280 a9evsep 4167 pwunim 4334 elvv 4738 elvvv 4739 resopab 5004 funfn 5302 dffn2 5429 dffn3 5438 dffn4 5506 fsn 5754 ixp0x 6815 ac6sfi 6997 fimax2gtri 7000 nninfwlporlemd 7276 xrmaxiflemcom 11593 plyun0 15241 trirec0xor 16021 |
| Copyright terms: Public domain | W3C validator |