| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 |
|
| Ref | Expression |
|---|---|
| biantru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 946 isset 2786 rexcom4b 2805 eueq 2954 ssrabeq 3291 a9evsep 4185 pwunim 4354 elvv 4758 elvvv 4759 resopab 5025 funfn 5324 dffn2 5451 dffn3 5460 dffn4 5530 fsn 5780 ixp0x 6843 ac6sfi 7028 fimax2gtri 7031 nninfwlporlemd 7307 ccatrcan 11217 xrmaxiflemcom 11726 plyun0 15375 trirec0xor 16324 |
| Copyright terms: Public domain | W3C validator |