![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantru | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantru |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 |
. 2
![]() ![]() | |
2 | iba 300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.71 389 mpbiran2 943 isset 2766 rexcom4b 2785 eueq 2932 ssrabeq 3267 a9evsep 4152 pwunim 4318 elvv 4722 elvvv 4723 resopab 4987 funfn 5285 dffn2 5406 dffn3 5415 dffn4 5483 fsn 5731 ixp0x 6782 ac6sfi 6956 fimax2gtri 6959 nninfwlporlemd 7233 xrmaxiflemcom 11395 plyun0 14915 trirec0xor 15605 |
Copyright terms: Public domain | W3C validator |