ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru Unicode version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1  |-  ph
Assertion
Ref Expression
biantru  |-  ( ps  <->  ( ps  /\  ph )
)

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2  |-  ph
2 iba 300 . 2  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  946  isset  2786  rexcom4b  2805  eueq  2954  ssrabeq  3291  a9evsep  4185  pwunim  4354  elvv  4758  elvvv  4759  resopab  5025  funfn  5324  dffn2  5451  dffn3  5460  dffn4  5530  fsn  5780  ixp0x  6843  ac6sfi  7028  fimax2gtri  7031  nninfwlporlemd  7307  ccatrcan  11217  xrmaxiflemcom  11726  plyun0  15375  trirec0xor  16324
  Copyright terms: Public domain W3C validator