ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru Unicode version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1  |-  ph
Assertion
Ref Expression
biantru  |-  ( ps  <->  ( ps  /\  ph )
)

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2  |-  ph
2 iba 300 . 2  |-  ( ph  ->  ( ps  <->  ( ps  /\ 
ph ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  943  isset  2766  rexcom4b  2785  eueq  2931  ssrabeq  3266  a9evsep  4151  pwunim  4317  elvv  4721  elvvv  4722  resopab  4986  funfn  5284  dffn2  5405  dffn3  5414  dffn4  5482  fsn  5730  ixp0x  6780  ac6sfi  6954  fimax2gtri  6957  nninfwlporlemd  7231  xrmaxiflemcom  11392  plyun0  14882  trirec0xor  15535
  Copyright terms: Public domain W3C validator