![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantru | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantru |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 |
. 2
![]() ![]() | |
2 | iba 300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.71 389 mpbiran2 941 isset 2745 rexcom4b 2764 eueq 2910 ssrabeq 3244 a9evsep 4127 pwunim 4288 elvv 4690 elvvv 4691 resopab 4953 funfn 5248 dffn2 5369 dffn3 5378 dffn4 5446 fsn 5690 ixp0x 6728 ac6sfi 6900 fimax2gtri 6903 nninfwlporlemd 7172 xrmaxiflemcom 11259 trirec0xor 14878 |
Copyright terms: Public domain | W3C validator |