ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffoss Unicode version

Theorem ffoss 5566
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1  |-  F  e. 
_V
Assertion
Ref Expression
ffoss  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 5284 . . . 4  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 dffn4 5516 . . . . 5  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
32anbi1i 458 . . . 4  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  <->  ( F : A -onto-> ran  F  /\  ran  F  C_  B ) )
41, 3bitri 184 . . 3  |-  ( F : A --> B  <->  ( F : A -onto-> ran  F  /\  ran  F 
C_  B ) )
5 f11o.1 . . . . 5  |-  F  e. 
_V
65rnex 4955 . . . 4  |-  ran  F  e.  _V
7 foeq3 5508 . . . . 5  |-  ( x  =  ran  F  -> 
( F : A -onto->
x  <->  F : A -onto-> ran  F ) )
8 sseq1 3220 . . . . 5  |-  ( x  =  ran  F  -> 
( x  C_  B  <->  ran 
F  C_  B )
)
97, 8anbi12d 473 . . . 4  |-  ( x  =  ran  F  -> 
( ( F : A -onto-> x  /\  x  C_  B )  <->  ( F : A -onto-> ran  F  /\  ran  F 
C_  B ) ) )
106, 9spcev 2872 . . 3  |-  ( ( F : A -onto-> ran  F  /\  ran  F  C_  B )  ->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
114, 10sylbi 121 . 2  |-  ( F : A --> B  ->  E. x ( F : A -onto-> x  /\  x  C_  B ) )
12 fof 5510 . . . 4  |-  ( F : A -onto-> x  ->  F : A --> x )
13 fss 5447 . . . 4  |-  ( ( F : A --> x  /\  x  C_  B )  ->  F : A --> B )
1412, 13sylan 283 . . 3  |-  ( ( F : A -onto-> x  /\  x  C_  B )  ->  F : A --> B )
1514exlimiv 1622 . 2  |-  ( E. x ( F : A -onto-> x  /\  x  C_  B )  ->  F : A --> B )
1611, 15impbii 126 1  |-  ( F : A --> B  <->  E. x
( F : A -onto->
x  /\  x  C_  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773    C_ wss 3170   ran crn 4684    Fn wfn 5275   -->wf 5276   -onto->wfo 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-cnv 4691  df-dm 4693  df-rn 4694  df-f 5284  df-fo 5286
This theorem is referenced by:  f11o  5567
  Copyright terms: Public domain W3C validator