| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffoss | Unicode version | ||
| Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| f11o.1 |
|
| Ref | Expression |
|---|---|
| ffoss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5272 |
. . . 4
| |
| 2 | dffn4 5498 |
. . . . 5
| |
| 3 | 2 | anbi1i 458 |
. . . 4
|
| 4 | 1, 3 | bitri 184 |
. . 3
|
| 5 | f11o.1 |
. . . . 5
| |
| 6 | 5 | rnex 4943 |
. . . 4
|
| 7 | foeq3 5490 |
. . . . 5
| |
| 8 | sseq1 3215 |
. . . . 5
| |
| 9 | 7, 8 | anbi12d 473 |
. . . 4
|
| 10 | 6, 9 | spcev 2867 |
. . 3
|
| 11 | 4, 10 | sylbi 121 |
. 2
|
| 12 | fof 5492 |
. . . 4
| |
| 13 | fss 5431 |
. . . 4
| |
| 14 | 12, 13 | sylan 283 |
. . 3
|
| 15 | 14 | exlimiv 1620 |
. 2
|
| 16 | 11, 15 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-cnv 4681 df-dm 4683 df-rn 4684 df-f 5272 df-fo 5274 |
| This theorem is referenced by: f11o 5549 |
| Copyright terms: Public domain | W3C validator |