ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem Unicode version

Theorem quslem 12910
Description: The function in qusval 12909 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
quslem  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem quslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6  |-  ( ph  ->  .~  e.  W )
2 ecexg 6593 . . . . . 6  |-  (  .~  e.  W  ->  [ x ]  .~  e.  _V )
31, 2syl 14 . . . . 5  |-  ( ph  ->  [ x ]  .~  e.  _V )
43ralrimivw 2568 . . . 4  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
5 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
65fnmpt 5381 . . . 4  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  F  Fn  V
)
74, 6syl 14 . . 3  |-  ( ph  ->  F  Fn  V )
8 dffn4 5483 . . 3  |-  ( F  Fn  V  <->  F : V -onto-> ran  F )
97, 8sylib 122 . 2  |-  ( ph  ->  F : V -onto-> ran  F )
105rnmpt 4911 . . . 4  |-  ran  F  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
11 df-qs 6595 . . . 4  |-  ( V /.  .~  )  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
1210, 11eqtr4i 2217 . . 3  |-  ran  F  =  ( V /.  .~  )
13 foeq3 5475 . . 3  |-  ( ran 
F  =  ( V /.  .~  )  -> 
( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) ) )
1412, 13ax-mp 5 . 2  |-  ( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) )
159, 14sylib 122 1  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    |-> cmpt 4091   ran crn 4661    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255  (class class class)co 5919   [cec 6587   /.cqs 6588   Basecbs 12621    /.s cqus 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-fo 5261  df-ec 6591  df-qs 6595
This theorem is referenced by:  qusbas  12913  qusaddvallemg  12919  qusaddflemg  12920  qusaddval  12921  qusaddf  12922  qusmulval  12923  qusmulf  12924  qusgrp2  13186  qusrng  13457  qusring2  13565  znzrhfo  14147
  Copyright terms: Public domain W3C validator