ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem Unicode version

Theorem quslem 12813
Description: The function in qusval 12812 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
quslem  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem quslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6  |-  ( ph  ->  .~  e.  W )
2 ecexg 6567 . . . . . 6  |-  (  .~  e.  W  ->  [ x ]  .~  e.  _V )
31, 2syl 14 . . . . 5  |-  ( ph  ->  [ x ]  .~  e.  _V )
43ralrimivw 2564 . . . 4  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
5 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
65fnmpt 5364 . . . 4  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  F  Fn  V
)
74, 6syl 14 . . 3  |-  ( ph  ->  F  Fn  V )
8 dffn4 5466 . . 3  |-  ( F  Fn  V  <->  F : V -onto-> ran  F )
97, 8sylib 122 . 2  |-  ( ph  ->  F : V -onto-> ran  F )
105rnmpt 4896 . . . 4  |-  ran  F  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
11 df-qs 6569 . . . 4  |-  ( V /.  .~  )  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
1210, 11eqtr4i 2213 . . 3  |-  ran  F  =  ( V /.  .~  )
13 foeq3 5458 . . 3  |-  ( ran 
F  =  ( V /.  .~  )  -> 
( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) ) )
1412, 13ax-mp 5 . 2  |-  ( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) )
159, 14sylib 122 1  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468   E.wrex 2469   _Vcvv 2752    |-> cmpt 4082   ran crn 4648    Fn wfn 5233   -onto->wfo 5236   ` cfv 5238  (class class class)co 5900   [cec 6561   /.cqs 6562   Basecbs 12524    /.s cqus 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-fun 5240  df-fn 5241  df-fo 5244  df-ec 6565  df-qs 6569
This theorem is referenced by:  qusbas  12816  qusaddvallemg  12821  qusaddflemg  12822  qusaddval  12823  qusaddf  12824  qusmulval  12825  qusmulf  12826  qusgrp2  13079  qusrng  13338  qusring2  13442
  Copyright terms: Public domain W3C validator