ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem Unicode version

Theorem quslem 13156
Description: The function in qusval 13155 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
quslem  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem quslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6  |-  ( ph  ->  .~  e.  W )
2 ecexg 6624 . . . . . 6  |-  (  .~  e.  W  ->  [ x ]  .~  e.  _V )
31, 2syl 14 . . . . 5  |-  ( ph  ->  [ x ]  .~  e.  _V )
43ralrimivw 2580 . . . 4  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
5 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
65fnmpt 5402 . . . 4  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  F  Fn  V
)
74, 6syl 14 . . 3  |-  ( ph  ->  F  Fn  V )
8 dffn4 5504 . . 3  |-  ( F  Fn  V  <->  F : V -onto-> ran  F )
97, 8sylib 122 . 2  |-  ( ph  ->  F : V -onto-> ran  F )
105rnmpt 4926 . . . 4  |-  ran  F  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
11 df-qs 6626 . . . 4  |-  ( V /.  .~  )  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
1210, 11eqtr4i 2229 . . 3  |-  ran  F  =  ( V /.  .~  )
13 foeq3 5496 . . 3  |-  ( ran 
F  =  ( V /.  .~  )  -> 
( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) ) )
1412, 13ax-mp 5 . 2  |-  ( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) )
159, 14sylib 122 1  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    |-> cmpt 4105   ran crn 4676    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271  (class class class)co 5944   [cec 6618   /.cqs 6619   Basecbs 12832    /.s cqus 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-fo 5277  df-ec 6622  df-qs 6626
This theorem is referenced by:  qusbas  13159  qusaddvallemg  13165  qusaddflemg  13166  qusaddval  13167  qusaddf  13168  qusmulval  13169  qusmulf  13170  qusgrp2  13449  qusrng  13720  qusring2  13828  znzrhfo  14410
  Copyright terms: Public domain W3C validator