ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem Unicode version

Theorem quslem 13271
Description: The function in qusval 13270 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
quslem  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem quslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6  |-  ( ph  ->  .~  e.  W )
2 ecexg 6647 . . . . . 6  |-  (  .~  e.  W  ->  [ x ]  .~  e.  _V )
31, 2syl 14 . . . . 5  |-  ( ph  ->  [ x ]  .~  e.  _V )
43ralrimivw 2582 . . . 4  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
5 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
65fnmpt 5422 . . . 4  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  F  Fn  V
)
74, 6syl 14 . . 3  |-  ( ph  ->  F  Fn  V )
8 dffn4 5526 . . 3  |-  ( F  Fn  V  <->  F : V -onto-> ran  F )
97, 8sylib 122 . 2  |-  ( ph  ->  F : V -onto-> ran  F )
105rnmpt 4945 . . . 4  |-  ran  F  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
11 df-qs 6649 . . . 4  |-  ( V /.  .~  )  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
1210, 11eqtr4i 2231 . . 3  |-  ran  F  =  ( V /.  .~  )
13 foeq3 5518 . . 3  |-  ( ran 
F  =  ( V /.  .~  )  -> 
( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) ) )
1412, 13ax-mp 5 . 2  |-  ( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) )
159, 14sylib 122 1  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    |-> cmpt 4121   ran crn 4694    Fn wfn 5285   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967   [cec 6641   /.cqs 6642   Basecbs 12947    /.s cqus 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-fo 5296  df-ec 6645  df-qs 6649
This theorem is referenced by:  qusbas  13274  qusaddvallemg  13280  qusaddflemg  13281  qusaddval  13282  qusaddf  13283  qusmulval  13284  qusmulf  13285  qusgrp2  13564  qusrng  13835  qusring2  13943  znzrhfo  14525
  Copyright terms: Public domain W3C validator