ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem Unicode version

Theorem quslem 12907
Description: The function in qusval 12906 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusval.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusval.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
qusval.e  |-  ( ph  ->  .~  e.  W )
qusval.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
quslem  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Distinct variable groups:    x,  .~    ph, x    x, R    x, V
Allowed substitution hints:    U( x)    F( x)    W( x)    Z( x)

Proof of Theorem quslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6  |-  ( ph  ->  .~  e.  W )
2 ecexg 6591 . . . . . 6  |-  (  .~  e.  W  ->  [ x ]  .~  e.  _V )
31, 2syl 14 . . . . 5  |-  ( ph  ->  [ x ]  .~  e.  _V )
43ralrimivw 2568 . . . 4  |-  ( ph  ->  A. x  e.  V  [ x ]  .~  e.  _V )
5 qusval.f . . . . 5  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
65fnmpt 5380 . . . 4  |-  ( A. x  e.  V  [
x ]  .~  e.  _V  ->  F  Fn  V
)
74, 6syl 14 . . 3  |-  ( ph  ->  F  Fn  V )
8 dffn4 5482 . . 3  |-  ( F  Fn  V  <->  F : V -onto-> ran  F )
97, 8sylib 122 . 2  |-  ( ph  ->  F : V -onto-> ran  F )
105rnmpt 4910 . . . 4  |-  ran  F  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
11 df-qs 6593 . . . 4  |-  ( V /.  .~  )  =  { y  |  E. x  e.  V  y  =  [ x ]  .~  }
1210, 11eqtr4i 2217 . . 3  |-  ran  F  =  ( V /.  .~  )
13 foeq3 5474 . . 3  |-  ( ran 
F  =  ( V /.  .~  )  -> 
( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) ) )
1412, 13ax-mp 5 . 2  |-  ( F : V -onto-> ran  F  <->  F : V -onto-> ( V /.  .~  ) )
159, 14sylib 122 1  |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    |-> cmpt 4090   ran crn 4660    Fn wfn 5249   -onto->wfo 5252   ` cfv 5254  (class class class)co 5918   [cec 6585   /.cqs 6586   Basecbs 12618    /.s cqus 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-fo 5260  df-ec 6589  df-qs 6593
This theorem is referenced by:  qusbas  12910  qusaddvallemg  12916  qusaddflemg  12917  qusaddval  12918  qusaddf  12919  qusmulval  12920  qusmulf  12921  qusgrp2  13183  qusrng  13454  qusring2  13562  znzrhfo  14136
  Copyright terms: Public domain W3C validator