ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima Unicode version

Theorem foima 5415
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 4956 . 2  |-  ( F
" dom  F )  =  ran  F
2 fof 5410 . . . 4  |-  ( F : A -onto-> B  ->  F : A --> B )
3 fdm 5343 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
42, 3syl 14 . . 3  |-  ( F : A -onto-> B  ->  dom  F  =  A )
54imaeq2d 4946 . 2  |-  ( F : A -onto-> B  -> 
( F " dom  F )  =  ( F
" A ) )
6 forn 5413 . 2  |-  ( F : A -onto-> B  ->  ran  F  =  B )
71, 5, 63eqtr3a 2223 1  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   dom cdm 4604   ran crn 4605   "cima 4607   -->wf 5184   -onto->wfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fn 5191  df-f 5192  df-fo 5194
This theorem is referenced by:  foimacnv  5450  foima2  5720  fiintim  6894  fidcenumlemr  6920
  Copyright terms: Public domain W3C validator