ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima Unicode version

Theorem foima 5425
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 4963 . 2  |-  ( F
" dom  F )  =  ran  F
2 fof 5420 . . . 4  |-  ( F : A -onto-> B  ->  F : A --> B )
3 fdm 5353 . . . 4  |-  ( F : A --> B  ->  dom  F  =  A )
42, 3syl 14 . . 3  |-  ( F : A -onto-> B  ->  dom  F  =  A )
54imaeq2d 4953 . 2  |-  ( F : A -onto-> B  -> 
( F " dom  F )  =  ( F
" A ) )
6 forn 5423 . 2  |-  ( F : A -onto-> B  ->  ran  F  =  B )
71, 5, 63eqtr3a 2227 1  |-  ( F : A -onto-> B  -> 
( F " A
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   dom cdm 4611   ran crn 4612   "cima 4614   -->wf 5194   -onto->wfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fn 5201  df-f 5202  df-fo 5204
This theorem is referenced by:  foimacnv  5460  foima2  5731  fiintim  6906  fidcenumlemr  6932
  Copyright terms: Public domain W3C validator