ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7a Unicode version

Theorem dfsb7a 2023
Description: An alternate definition of proper substitution df-sb 1787. Similar to dfsb7 2020 in that it involves a dummy variable  z, but expressed in terms of  A. rather than  E.. For a version which only requires  F/ z ph rather than  z and  ph being distinct, see sb7af 2022. (Contributed by Jim Kingdon, 5-Feb-2018.)
Assertion
Ref Expression
dfsb7a  |-  ( [ y  /  x ] ph 
<-> 
A. z ( z  =  y  ->  A. x
( x  =  z  ->  ph ) ) )
Distinct variable groups:    x, z    y,
z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfsb7a
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ z
ph
21sb7af 2022 1  |-  ( [ y  /  x ] ph 
<-> 
A. z ( z  =  y  ->  A. x
( x  =  z  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator