ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7 Unicode version

Theorem dfsb7 2010
Description: An alternate definition of proper substitution df-sb 1777. By introducing a dummy variable  z in the definiens, we are able to eliminate any distinct variable restrictions among the variables  x,  y, and  ph of the definiendum. No distinct variable conflicts arise because  z effectively insulates  x from  y. To achieve this, we use a chain of two substitutions in the form of sb5 1902, first  z for  x then  y for  z. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 2011 provides a version where  ph and  z don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
dfsb7  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Distinct variable groups:    x, z    y,
z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfsb7
StepHypRef Expression
1 sb5 1902 . . 3  |-  ( [ z  /  x ] ph 
<->  E. x ( x  =  z  /\  ph ) )
21sbbii 1779 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] E. x ( x  =  z  /\  ph ) )
3 ax-17 1540 . . 3  |-  ( ph  ->  A. z ph )
43sbco2vh 1964 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
5 sb5 1902 . 2  |-  ( [ y  /  z ] E. x ( x  =  z  /\  ph ) 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
62, 4, 53bitr3i 210 1  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1506   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator