ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb10f Unicode version

Theorem sb10f 1983
Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
Hypothesis
Ref Expression
sb10f.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
sb10f  |-  ( [ y  /  z ]
ph 
<->  E. x ( x  =  y  /\  [
x  /  z ]
ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sb10f
StepHypRef Expression
1 sb10f.1 . . . 4  |-  ( ph  ->  A. x ph )
21hbsb 1937 . . 3  |-  ( [ y  /  z ]
ph  ->  A. x [ y  /  z ] ph )
3 sbequ 1828 . . 3  |-  ( x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
42, 3equsex 1716 . 2  |-  ( E. x ( x  =  y  /\  [ x  /  z ] ph ) 
<->  [ y  /  z ] ph )
54bicomi 131 1  |-  ( [ y  /  z ]
ph 
<->  E. x ( x  =  y  /\  [
x  /  z ]
ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator