ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7a GIF version

Theorem dfsb7a 2045
Description: An alternate definition of proper substitution df-sb 1809. Similar to dfsb7 2042 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 2044. (Contributed by Jim Kingdon, 5-Feb-2018.)
Assertion
Ref Expression
dfsb7a ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfsb7a
StepHypRef Expression
1 nfv 1574 . 2 𝑧𝜑
21sb7af 2044 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator