ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7a GIF version

Theorem dfsb7a 1987
Description: An alternate definition of proper substitution df-sb 1756. Similar to dfsb7 1984 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 1986. (Contributed by Jim Kingdon, 5-Feb-2018.)
Assertion
Ref Expression
dfsb7a ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfsb7a
StepHypRef Expression
1 nfv 1521 . 2 𝑧𝜑
21sb7af 1986 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator