| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsb7a | GIF version | ||
| Description: An alternate definition of proper substitution df-sb 1809. Similar to dfsb7 2042 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. For a version which only requires Ⅎ𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 2044. (Contributed by Jim Kingdon, 5-Feb-2018.) |
| Ref | Expression |
|---|---|
| dfsb7a | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | sb7af 2044 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |