ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss Unicode version

Theorem dfss 3180
Description: Variant of subclass definition df-ss 3179. (Contributed by NM, 3-Sep-2004.)
Assertion
Ref Expression
dfss  |-  ( A 
C_  B  <->  A  =  ( A  i^i  B ) )

Proof of Theorem dfss
StepHypRef Expression
1 df-ss 3179 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 eqcom 2207 . 2  |-  ( ( A  i^i  B )  =  A  <->  A  =  ( A  i^i  B ) )
31, 2bitri 184 1  |-  ( A 
C_  B  <->  A  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    i^i cin 3165    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-ss 3179
This theorem is referenced by:  ssalel  3181  onelini  4477  cnvcnv  5135  funimass1  5351  sbthlemi5  7063  dmaddpi  7438  dmmulpi  7439  tgioo  15026
  Copyright terms: Public domain W3C validator