ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi Unicode version

Theorem dmaddpi 7508
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi  |-  dom  +N  =  ( N.  X.  N. )

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5025 . . 3  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  dom  +o  )
2 fnoa 6591 . . . . 5  |-  +o  Fn  ( On  X.  On )
3 fndm 5419 . . . . 5  |-  (  +o  Fn  ( On  X.  On )  ->  dom  +o  =  ( On  X.  On ) )
42, 3ax-mp 5 . . . 4  |-  dom  +o  =  ( On  X.  On )
54ineq2i 3402 . . 3  |-  ( ( N.  X.  N. )  i^i  dom  +o  )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
61, 5eqtri 2250 . 2  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
7 df-pli 7488 . . 3  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
87dmeqi 4923 . 2  |-  dom  +N  =  dom  (  +o  |`  ( N.  X.  N. ) )
9 df-ni 7487 . . . . . . 7  |-  N.  =  ( om  \  { (/) } )
10 difss 3330 . . . . . . 7  |-  ( om 
\  { (/) } ) 
C_  om
119, 10eqsstri 3256 . . . . . 6  |-  N.  C_  om
12 omsson 4704 . . . . . 6  |-  om  C_  On
1311, 12sstri 3233 . . . . 5  |-  N.  C_  On
14 anidm 396 . . . . 5  |-  ( ( N.  C_  On  /\  N.  C_  On )  <->  N.  C_  On )
1513, 14mpbir 146 . . . 4  |-  ( N.  C_  On  /\  N.  C_  On )
16 xpss12 4825 . . . 4  |-  ( ( N.  C_  On  /\  N.  C_  On )  ->  ( N.  X.  N. )  C_  ( On  X.  On ) )
1715, 16ax-mp 5 . . 3  |-  ( N. 
X.  N. )  C_  ( On  X.  On )
18 dfss 3211 . . 3  |-  ( ( N.  X.  N. )  C_  ( On  X.  On ) 
<->  ( N.  X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) ) )
1917, 18mpbi 145 . 2  |-  ( N. 
X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
206, 8, 193eqtr4i 2260 1  |-  dom  +N  =  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491   {csn 3666   Oncon0 4453   omcom 4681    X. cxp 4716   dom cdm 4718    |` cres 4720    Fn wfn 5312    +o coa 6557   N.cnpi 7455    +N cpli 7456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-ni 7487  df-pli 7488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator