ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi Unicode version

Theorem dmaddpi 7355
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi  |-  dom  +N  =  ( N.  X.  N. )

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4946 . . 3  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  dom  +o  )
2 fnoa 6473 . . . . 5  |-  +o  Fn  ( On  X.  On )
3 fndm 5334 . . . . 5  |-  (  +o  Fn  ( On  X.  On )  ->  dom  +o  =  ( On  X.  On ) )
42, 3ax-mp 5 . . . 4  |-  dom  +o  =  ( On  X.  On )
54ineq2i 3348 . . 3  |-  ( ( N.  X.  N. )  i^i  dom  +o  )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
61, 5eqtri 2210 . 2  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
7 df-pli 7335 . . 3  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
87dmeqi 4846 . 2  |-  dom  +N  =  dom  (  +o  |`  ( N.  X.  N. ) )
9 df-ni 7334 . . . . . . 7  |-  N.  =  ( om  \  { (/) } )
10 difss 3276 . . . . . . 7  |-  ( om 
\  { (/) } ) 
C_  om
119, 10eqsstri 3202 . . . . . 6  |-  N.  C_  om
12 omsson 4630 . . . . . 6  |-  om  C_  On
1311, 12sstri 3179 . . . . 5  |-  N.  C_  On
14 anidm 396 . . . . 5  |-  ( ( N.  C_  On  /\  N.  C_  On )  <->  N.  C_  On )
1513, 14mpbir 146 . . . 4  |-  ( N.  C_  On  /\  N.  C_  On )
16 xpss12 4751 . . . 4  |-  ( ( N.  C_  On  /\  N.  C_  On )  ->  ( N.  X.  N. )  C_  ( On  X.  On ) )
1715, 16ax-mp 5 . . 3  |-  ( N. 
X.  N. )  C_  ( On  X.  On )
18 dfss 3158 . . 3  |-  ( ( N.  X.  N. )  C_  ( On  X.  On ) 
<->  ( N.  X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) ) )
1917, 18mpbi 145 . 2  |-  ( N. 
X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
206, 8, 193eqtr4i 2220 1  |-  dom  +N  =  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    \ cdif 3141    i^i cin 3143    C_ wss 3144   (/)c0 3437   {csn 3607   Oncon0 4381   omcom 4607    X. cxp 4642   dom cdm 4644    |` cres 4646    Fn wfn 5230    +o coa 6439   N.cnpi 7302    +N cpli 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-oadd 6446  df-ni 7334  df-pli 7335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator