ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 Unicode version

Theorem funimass1 5397
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 5103 . 2  |-  ( ( `' F " A ) 
C_  B  ->  ( F " ( `' F " A ) )  C_  ( F " B ) )
2 funimacnv 5396 . . . 4  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
3 dfss 3211 . . . . . 6  |-  ( A 
C_  ran  F  <->  A  =  ( A  i^i  ran  F
) )
43biimpi 120 . . . . 5  |-  ( A 
C_  ran  F  ->  A  =  ( A  i^i  ran 
F ) )
54eqcomd 2235 . . . 4  |-  ( A 
C_  ran  F  ->  ( A  i^i  ran  F
)  =  A )
62, 5sylan9eq 2282 . . 3  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( F " ( `' F " A ) )  =  A )
76sseq1d 3253 . 2  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( F "
( `' F " A ) )  C_  ( F " B )  <-> 
A  C_  ( F " B ) ) )
81, 7imbitrid 154 1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    i^i cin 3196    C_ wss 3197   `'ccnv 4717   ran crn 4719   "cima 4721   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319
This theorem is referenced by:  hmeontr  14981
  Copyright terms: Public domain W3C validator