ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpi Unicode version

Theorem dmmulpi 7229
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmmulpi  |-  dom  .N  =  ( N.  X.  N. )

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 4884 . . 3  |-  dom  (  .o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  dom  .o  )
2 fnom 6390 . . . . 5  |-  .o  Fn  ( On  X.  On )
3 fndm 5266 . . . . 5  |-  (  .o  Fn  ( On  X.  On )  ->  dom  .o  =  ( On  X.  On ) )
42, 3ax-mp 5 . . . 4  |-  dom  .o  =  ( On  X.  On )
54ineq2i 3305 . . 3  |-  ( ( N.  X.  N. )  i^i  dom  .o  )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
61, 5eqtri 2178 . 2  |-  dom  (  .o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
7 df-mi 7209 . . 3  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
87dmeqi 4784 . 2  |-  dom  .N  =  dom  (  .o  |`  ( N.  X.  N. ) )
9 df-ni 7207 . . . . . . 7  |-  N.  =  ( om  \  { (/) } )
10 difss 3233 . . . . . . 7  |-  ( om 
\  { (/) } ) 
C_  om
119, 10eqsstri 3160 . . . . . 6  |-  N.  C_  om
12 omsson 4570 . . . . . 6  |-  om  C_  On
1311, 12sstri 3137 . . . . 5  |-  N.  C_  On
14 anidm 394 . . . . 5  |-  ( ( N.  C_  On  /\  N.  C_  On )  <->  N.  C_  On )
1513, 14mpbir 145 . . . 4  |-  ( N.  C_  On  /\  N.  C_  On )
16 xpss12 4690 . . . 4  |-  ( ( N.  C_  On  /\  N.  C_  On )  ->  ( N.  X.  N. )  C_  ( On  X.  On ) )
1715, 16ax-mp 5 . . 3  |-  ( N. 
X.  N. )  C_  ( On  X.  On )
18 dfss 3116 . . 3  |-  ( ( N.  X.  N. )  C_  ( On  X.  On ) 
<->  ( N.  X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) ) )
1917, 18mpbi 144 . 2  |-  ( N. 
X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
206, 8, 193eqtr4i 2188 1  |-  dom  .N  =  ( N.  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    \ cdif 3099    i^i cin 3101    C_ wss 3102   (/)c0 3394   {csn 3560   Oncon0 4322   omcom 4547    X. cxp 4581   dom cdm 4583    |` cres 4585    Fn wfn 5162    .o comu 6355   N.cnpi 7175    .N cmi 7177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-oadd 6361  df-omul 6362  df-ni 7207  df-mi 7209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator