ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgioo Unicode version

Theorem tgioo 14790
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
tgioo.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tgioo  |-  ( topGen ` 
ran  (,) )  =  J

Proof of Theorem tgioo
Dummy variables  x  y  z  w  a  b  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 14785 . . 3  |-  D  e.  ( *Met `  RR )
3 tgioo.2 . . . 4  |-  J  =  ( MetOpen `  D )
43mopnval 14678 . . 3  |-  ( D  e.  ( *Met `  RR )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
52, 4ax-mp 5 . 2  |-  J  =  ( topGen `  ran  ( ball `  D ) )
6 blex 14623 . . . . 5  |-  ( D  e.  ( *Met `  RR )  ->  ( ball `  D )  e. 
_V )
72, 6ax-mp 5 . . . 4  |-  ( ball `  D )  e.  _V
87rnex 4933 . . 3  |-  ran  ( ball `  D )  e. 
_V
91blssioo 14789 . . 3  |-  ran  ( ball `  D )  C_  ran  (,)
10 elssuni 3867 . . . . . . 7  |-  ( v  e.  ran  (,)  ->  v 
C_  U. ran  (,) )
11 unirnioo 10048 . . . . . . 7  |-  RR  =  U. ran  (,)
1210, 11sseqtrrdi 3232 . . . . . 6  |-  ( v  e.  ran  (,)  ->  v 
C_  RR )
13 retopbas 14759 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
1413a1i 9 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ran  (,)  e.  TopBases )
15 simpl 109 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  v  e.  ran  (,) )
1612sselda 3183 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  RR )
17 1re 8025 . . . . . . . . . . . 12  |-  1  e.  RR
181bl2ioo 14786 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x ( ball `  D ) 1 )  =  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
1917, 18mpan2 425 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
20 peano2rem 8293 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
2120rexrd 8076 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR* )
22 peano2re 8162 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
2322rexrd 8076 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
24 ioorebasg 10050 . . . . . . . . . . . 12  |-  ( ( ( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2521, 23, 24syl2anc 411 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2619, 25eqeltrd 2273 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  e. 
ran  (,) )
2716, 26syl 14 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ( x (
ball `  D )
1 )  e.  ran  (,) )
28 simpr 110 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  v )
29 1rp 9732 . . . . . . . . . . . 12  |-  1  e.  RR+
30 blcntr 14652 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
312, 29, 30mp3an13 1339 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( x ( ball `  D ) 1 ) )
3216, 31syl 14 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( x ( ball `  D
) 1 ) )
3328, 32elind 3348 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( v  i^i  ( x ( ball `  D
) 1 ) ) )
34 basis2 14284 . . . . . . . . 9  |-  ( ( ( ran  (,)  e.  TopBases  /\  v  e.  ran  (,) )  /\  ( ( x ( ball `  D
) 1 )  e. 
ran  (,)  /\  x  e.  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )
3514, 15, 27, 33, 34syl22anc 1250 . . . . . . . 8  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
36 ioof 10046 . . . . . . . . . . 11  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
37 ffn 5407 . . . . . . . . . . 11  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
38 ovelrn 6072 . . . . . . . . . . 11  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
3936, 37, 38mp2b 8 . . . . . . . . . 10  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
40 eleq2 2260 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
x  e.  z  <->  x  e.  ( a (,) b
) ) )
41 sseq1 3206 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
4240, 41anbi12d 473 . . . . . . . . . . . . . 14  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  <-> 
( x  e.  ( a (,) b )  /\  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) ) )
43 inss2 3384 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 )
44 sstr 3191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4543, 44mpan2 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4645adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( x (
ball `  D )
1 ) )
47 elioore 9987 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  x  e.  RR )
4847adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  RR )
4948, 19syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
5046, 49sseqtrd 3221 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
51 dfss 3171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) )  <->  ( a (,) b )  =  ( ( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) ) )
5250, 51sylib 122 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( ( a (,) b )  i^i  ( ( x  - 
1 ) (,) (
x  +  1 ) ) ) )
53 eliooxr 10002 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
5421, 23jca 306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
5547, 54syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
56 iooinsup 11442 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  ( ( x  - 
1 )  e.  RR*  /\  ( x  +  1 )  e.  RR* )
)  ->  ( (
a (,) b )  i^i  ( ( x  -  1 ) (,) ( x  +  1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
5753, 55, 56syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
5857adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
5952, 58eqtrd 2229 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
60 mnfxr 8083 . . . . . . . . . . . . . . . . . . . 20  |- -oo  e.  RR*
6160a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  e.  RR* )
6253adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
6362simpld 112 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  a  e.  RR* )
6448, 21syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR* )
65 xrmaxcl 11417 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR* )
6663, 64, 65syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR* )
6762simprd 114 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  b  e.  RR* )
6848, 22syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR )
6968rexrd 8076 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR* )
70 xrmincl 11431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )
7167, 69, 70syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )
7247, 20syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  (
x  -  1 )  e.  RR )
7372adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR )
74 mnflt 9858 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  -  1 )  e.  RR  -> -oo  <  ( x  -  1 ) )
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  ( x  -  1 ) )
76 xrmax2sup 11419 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  (
x  -  1 )  <_  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) )
7763, 64, 76syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  <_  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) )
7861, 64, 66, 75, 77xrltletrd 9886 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
79 simpl 109 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( a (,) b
) )
8079, 59eleqtrd 2275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
81 eliooxr 10002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR*  /\ inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* ) )
82 elex2 2779 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  E. w  w  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
83 ioom 10350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  ->  ( E. w  w  e.  ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) (,)inf
( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  <->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
8482, 83imbitrid 154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  ->  (
x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
8581, 84mpcom 36 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )
8680, 85syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )
87 xrre2 9896 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( -oo  e.  RR*  /\ 
sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  /\  ( -oo  <  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  /\  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR )
8861, 66, 71, 78, 86, 87syl32anc 1257 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR )
89 mnfle 9867 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR*  -> -oo  <_  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
9066, 89syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <_  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
9161, 66, 71, 90, 86xrlelttrd 9885 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )
92 xrmin2inf 11433 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  +  1 ) )
9367, 69, 92syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  +  1 ) )
94 xrre 9895 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\  ( x  +  1 )  e.  RR )  /\  ( -oo  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  /\ inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  + 
1 ) ) )  -> inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  e.  RR )
9571, 68, 91, 93, 94syl22anc 1250 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR )
961ioo2blex 14788 . . . . . . . . . . . . . . . . . 18  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e.  RR  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  e.  ran  ( ball `  D ) )
9788, 95, 96syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  e.  ran  ( ball `  D ) )
9859, 97eqeltrd 2273 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  e.  ran  ( ball `  D ) )
99 inss1 3383 . . . . . . . . . . . . . . . . . 18  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v
100 sstr 3191 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v )  ->  (
a (,) b ) 
C_  v )
10199, 100mpan2 425 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  v
)
102101adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  v )
103 sseq1 3206 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a (,) b )  ->  (
z  C_  v  <->  ( a (,) b )  C_  v
) )
10440, 103anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  v
)  <->  ( x  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
105104rspcev 2868 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  e.  ran  ( ball `  D )  /\  ( x  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
10698, 79, 102, 105syl12anc 1247 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
107 blssex 14666 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR )  ->  ( E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1082, 48, 107sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  v
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
109106, 108mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
11042, 109biimtrdi 163 . . . . . . . . . . . . 13  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
111110a1i 9 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
z  =  ( a (,) b )  -> 
( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
112111rexlimivv 2620 . . . . . . . . . . 11  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
113112imp 124 . . . . . . . . . 10  |-  ( ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  /\  (
x  e.  z  /\  z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) ) )  ->  E. y  e.  RR+  (
x ( ball `  D
) y )  C_  v )
11439, 113sylanb 284 . . . . . . . . 9  |-  ( ( z  e.  ran  (,)  /\  ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
115114rexlimiva 2609 . . . . . . . 8  |-  ( E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  ( x (
ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
11635, 115syl 14 . . . . . . 7  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
117116ralrimiva 2570 . . . . . 6  |-  ( v  e.  ran  (,)  ->  A. x  e.  v  E. y  e.  RR+  ( x ( ball `  D
) y )  C_  v )
1183elmopn2 14685 . . . . . . 7  |-  ( D  e.  ( *Met `  RR )  ->  (
v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
1192, 118ax-mp 5 . . . . . 6  |-  ( v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
12012, 117, 119sylanbrc 417 . . . . 5  |-  ( v  e.  ran  (,)  ->  v  e.  J )
121120ssriv 3187 . . . 4  |-  ran  (,)  C_  J
122121, 5sseqtri 3217 . . 3  |-  ran  (,)  C_  ( topGen `  ran  ( ball `  D ) )
123 2basgeng 14318 . . 3  |-  ( ( ran  ( ball `  D
)  e.  _V  /\  ran  ( ball `  D
)  C_  ran  (,)  /\  ran  (,)  C_  ( topGen ` 
ran  ( ball `  D
) ) )  -> 
( topGen `  ran  ( ball `  D ) )  =  ( topGen `  ran  (,) )
)
1248, 9, 122, 123mp3an 1348 . 2  |-  ( topGen ` 
ran  ( ball `  D
) )  =  (
topGen `  ran  (,) )
1255, 124eqtr2i 2218 1  |-  ( topGen ` 
ran  (,) )  =  J
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ~Pcpw 3605   {cpr 3623   U.cuni 3839   class class class wbr 4033    X. cxp 4661   ran crn 4664    |` cres 4665    o. ccom 4667    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   supcsup 7048  infcinf 7049   RRcr 7878   1c1 7880    + caddc 7882   -oocmnf 8059   RR*cxr 8060    < clt 8061    <_ cle 8062    - cmin 8197   RR+crp 9728   (,)cioo 9963   abscabs 11162   topGenctg 12925   *Metcxmet 14092   ballcbl 14094   MetOpencmopn 14097   TopBasesctb 14278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-bases 14279
This theorem is referenced by:  resubmet  14792  tgioo2cntop  14793  tgioo2  14795
  Copyright terms: Public domain W3C validator