ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgioo Unicode version

Theorem tgioo 15228
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
tgioo.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tgioo  |-  ( topGen ` 
ran  (,) )  =  J

Proof of Theorem tgioo
Dummy variables  x  y  z  w  a  b  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 15223 . . 3  |-  D  e.  ( *Met `  RR )
3 tgioo.2 . . . 4  |-  J  =  ( MetOpen `  D )
43mopnval 15116 . . 3  |-  ( D  e.  ( *Met `  RR )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
52, 4ax-mp 5 . 2  |-  J  =  ( topGen `  ran  ( ball `  D ) )
6 blex 15061 . . . . 5  |-  ( D  e.  ( *Met `  RR )  ->  ( ball `  D )  e. 
_V )
72, 6ax-mp 5 . . . 4  |-  ( ball `  D )  e.  _V
87rnex 4992 . . 3  |-  ran  ( ball `  D )  e. 
_V
91blssioo 15227 . . 3  |-  ran  ( ball `  D )  C_  ran  (,)
10 elssuni 3916 . . . . . . 7  |-  ( v  e.  ran  (,)  ->  v 
C_  U. ran  (,) )
11 unirnioo 10169 . . . . . . 7  |-  RR  =  U. ran  (,)
1210, 11sseqtrrdi 3273 . . . . . 6  |-  ( v  e.  ran  (,)  ->  v 
C_  RR )
13 retopbas 15197 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
1413a1i 9 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ran  (,)  e.  TopBases )
15 simpl 109 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  v  e.  ran  (,) )
1612sselda 3224 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  RR )
17 1re 8145 . . . . . . . . . . . 12  |-  1  e.  RR
181bl2ioo 15224 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x ( ball `  D ) 1 )  =  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
1917, 18mpan2 425 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
20 peano2rem 8413 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
2120rexrd 8196 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR* )
22 peano2re 8282 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
2322rexrd 8196 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
24 ioorebasg 10171 . . . . . . . . . . . 12  |-  ( ( ( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2521, 23, 24syl2anc 411 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2619, 25eqeltrd 2306 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  e. 
ran  (,) )
2716, 26syl 14 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ( x (
ball `  D )
1 )  e.  ran  (,) )
28 simpr 110 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  v )
29 1rp 9853 . . . . . . . . . . . 12  |-  1  e.  RR+
30 blcntr 15090 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
312, 29, 30mp3an13 1362 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( x ( ball `  D ) 1 ) )
3216, 31syl 14 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( x ( ball `  D
) 1 ) )
3328, 32elind 3389 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( v  i^i  ( x ( ball `  D
) 1 ) ) )
34 basis2 14722 . . . . . . . . 9  |-  ( ( ( ran  (,)  e.  TopBases  /\  v  e.  ran  (,) )  /\  ( ( x ( ball `  D
) 1 )  e. 
ran  (,)  /\  x  e.  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )
3514, 15, 27, 33, 34syl22anc 1272 . . . . . . . 8  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
36 ioof 10167 . . . . . . . . . . 11  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
37 ffn 5473 . . . . . . . . . . 11  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
38 ovelrn 6154 . . . . . . . . . . 11  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
3936, 37, 38mp2b 8 . . . . . . . . . 10  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
40 eleq2 2293 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
x  e.  z  <->  x  e.  ( a (,) b
) ) )
41 sseq1 3247 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
4240, 41anbi12d 473 . . . . . . . . . . . . . 14  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  <-> 
( x  e.  ( a (,) b )  /\  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) ) )
43 inss2 3425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 )
44 sstr 3232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4543, 44mpan2 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4645adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( x (
ball `  D )
1 ) )
47 elioore 10108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  x  e.  RR )
4847adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  RR )
4948, 19syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
5046, 49sseqtrd 3262 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
51 dfss 3211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) )  <->  ( a (,) b )  =  ( ( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) ) )
5250, 51sylib 122 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( ( a (,) b )  i^i  ( ( x  - 
1 ) (,) (
x  +  1 ) ) ) )
53 eliooxr 10123 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
5421, 23jca 306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
5547, 54syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
56 iooinsup 11788 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  ( ( x  - 
1 )  e.  RR*  /\  ( x  +  1 )  e.  RR* )
)  ->  ( (
a (,) b )  i^i  ( ( x  -  1 ) (,) ( x  +  1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
5753, 55, 56syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
5857adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
5952, 58eqtrd 2262 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
60 mnfxr 8203 . . . . . . . . . . . . . . . . . . . 20  |- -oo  e.  RR*
6160a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  e.  RR* )
6253adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
6362simpld 112 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  a  e.  RR* )
6448, 21syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR* )
65 xrmaxcl 11763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR* )
6663, 64, 65syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR* )
6762simprd 114 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  b  e.  RR* )
6848, 22syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR )
6968rexrd 8196 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR* )
70 xrmincl 11777 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )
7167, 69, 70syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )
7247, 20syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  (
x  -  1 )  e.  RR )
7372adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR )
74 mnflt 9979 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  -  1 )  e.  RR  -> -oo  <  ( x  -  1 ) )
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  ( x  -  1 ) )
76 xrmax2sup 11765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  (
x  -  1 )  <_  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) )
7763, 64, 76syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  <_  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) )
7861, 64, 66, 75, 77xrltletrd 10007 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
79 simpl 109 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( a (,) b
) )
8079, 59eleqtrd 2308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
81 eliooxr 10123 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR*  /\ inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* ) )
82 elex2 2816 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  E. w  w  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )
83 ioom 10480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  ->  ( E. w  w  e.  ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  ) (,)inf
( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  <->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
8482, 83imbitrid 154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  ->  (
x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) ) )
8581, 84mpcom 36 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )  ->  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )
8680, 85syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  ) )
87 xrre2 10017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( -oo  e.  RR*  /\ 
sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR* )  /\  ( -oo  <  sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  /\  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR )
8861, 66, 71, 78, 86, 87syl32anc 1279 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR )
89 mnfle 9988 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  )  e.  RR*  -> -oo  <_  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
9066, 89syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <_  sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) )
9161, 66, 71, 90, 86xrlelttrd 10006 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  < inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )
92 xrmin2inf 11779 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  +  1 ) )
9367, 69, 92syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  +  1 ) )
94 xrre 10016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  e. 
RR*  /\  ( x  +  1 )  e.  RR )  /\  ( -oo  < inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  /\ inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  <_  ( x  + 
1 ) ) )  -> inf ( { b ,  ( x  + 
1 ) } ,  RR* ,  <  )  e.  RR )
9571, 68, 91, 93, 94syl22anc 1272 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR )
961ioo2blex 15226 . . . . . . . . . . . . . . . . . 18  |-  ( ( sup ( { a ,  ( x  - 
1 ) } ,  RR* ,  <  )  e.  RR  /\ inf ( {
b ,  ( x  +  1 ) } ,  RR* ,  <  )  e.  RR )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  e.  ran  ( ball `  D ) )
9788, 95, 96syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( sup ( { a ,  ( x  -  1 ) } ,  RR* ,  <  ) (,)inf ( { b ,  ( x  +  1 ) } ,  RR* ,  <  ) )  e.  ran  ( ball `  D ) )
9859, 97eqeltrd 2306 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  e.  ran  ( ball `  D ) )
99 inss1 3424 . . . . . . . . . . . . . . . . . 18  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v
100 sstr 3232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v )  ->  (
a (,) b ) 
C_  v )
10199, 100mpan2 425 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  v
)
102101adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  v )
103 sseq1 3247 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a (,) b )  ->  (
z  C_  v  <->  ( a (,) b )  C_  v
) )
10440, 103anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  v
)  <->  ( x  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
105104rspcev 2907 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  e.  ran  ( ball `  D )  /\  ( x  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
10698, 79, 102, 105syl12anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
107 blssex 15104 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR )  ->  ( E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1082, 48, 107sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  v
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
109106, 108mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
11042, 109biimtrdi 163 . . . . . . . . . . . . 13  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
111110a1i 9 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
z  =  ( a (,) b )  -> 
( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
112111rexlimivv 2654 . . . . . . . . . . 11  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
113112imp 124 . . . . . . . . . 10  |-  ( ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  /\  (
x  e.  z  /\  z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) ) )  ->  E. y  e.  RR+  (
x ( ball `  D
) y )  C_  v )
11439, 113sylanb 284 . . . . . . . . 9  |-  ( ( z  e.  ran  (,)  /\  ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
115114rexlimiva 2643 . . . . . . . 8  |-  ( E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  ( x (
ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
11635, 115syl 14 . . . . . . 7  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
117116ralrimiva 2603 . . . . . 6  |-  ( v  e.  ran  (,)  ->  A. x  e.  v  E. y  e.  RR+  ( x ( ball `  D
) y )  C_  v )
1183elmopn2 15123 . . . . . . 7  |-  ( D  e.  ( *Met `  RR )  ->  (
v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
1192, 118ax-mp 5 . . . . . 6  |-  ( v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
12012, 117, 119sylanbrc 417 . . . . 5  |-  ( v  e.  ran  (,)  ->  v  e.  J )
121120ssriv 3228 . . . 4  |-  ran  (,)  C_  J
122121, 5sseqtri 3258 . . 3  |-  ran  (,)  C_  ( topGen `  ran  ( ball `  D ) )
123 2basgeng 14756 . . 3  |-  ( ( ran  ( ball `  D
)  e.  _V  /\  ran  ( ball `  D
)  C_  ran  (,)  /\  ran  (,)  C_  ( topGen ` 
ran  ( ball `  D
) ) )  -> 
( topGen `  ran  ( ball `  D ) )  =  ( topGen `  ran  (,) )
)
1248, 9, 122, 123mp3an 1371 . 2  |-  ( topGen ` 
ran  ( ball `  D
) )  =  (
topGen `  ran  (,) )
1255, 124eqtr2i 2251 1  |-  ( topGen ` 
ran  (,) )  =  J
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   {cpr 3667   U.cuni 3888   class class class wbr 4083    X. cxp 4717   ran crn 4720    |` cres 4721    o. ccom 4723    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001   supcsup 7149  infcinf 7150   RRcr 7998   1c1 8000    + caddc 8002   -oocmnf 8179   RR*cxr 8180    < clt 8181    <_ cle 8182    - cmin 8317   RR+crp 9849   (,)cioo 10084   abscabs 11508   topGenctg 13287   *Metcxmet 14500   ballcbl 14502   MetOpencmopn 14505   TopBasesctb 14716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-bases 14717
This theorem is referenced by:  resubmet  15230  tgioo2cntop  15231  tgioo2  15233
  Copyright terms: Public domain W3C validator