Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss2 | Unicode version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss 3135 | . . 3 | |
2 | df-in 3127 | . . . 4 | |
3 | 2 | eqeq2i 2181 | . . 3 |
4 | abeq2 2279 | . . 3 | |
5 | 1, 3, 4 | 3bitri 205 | . 2 |
6 | pm4.71 387 | . . 3 | |
7 | 6 | albii 1463 | . 2 |
8 | 5, 7 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 cin 3120 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: dfss3 3137 dfss2f 3138 ssel 3141 ssriv 3151 ssrdv 3153 sstr2 3154 eqss 3162 nssr 3207 rabss2 3230 ssconb 3260 ssequn1 3297 unss 3301 ssin 3349 ssddif 3361 reldisj 3466 ssdif0im 3479 inssdif0im 3482 ssundifim 3498 sbcssg 3524 pwss 3582 snss 3709 snsssn 3748 ssuni 3818 unissb 3826 intss 3852 iunss 3914 dftr2 4089 axpweq 4157 axpow2 4162 ssextss 4205 ordunisuc2r 4498 setind 4523 zfregfr 4558 tfi 4566 ssrel 4699 ssrel2 4701 ssrelrel 4711 reliun 4732 relop 4761 issref 4993 funimass4 5547 isprm2 12071 bj-inf2vnlem3 14007 bj-inf2vnlem4 14008 |
Copyright terms: Public domain | W3C validator |