![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfss | GIF version |
Description: Variant of subclass definition df-ss 3167. (Contributed by NM, 3-Sep-2004.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3167 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2195 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 184 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∩ cin 3153 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ss 3167 |
This theorem is referenced by: dfss2 3169 onelini 4462 cnvcnv 5119 funimass1 5332 sbthlemi5 7022 dmaddpi 7387 dmmulpi 7388 tgioo 14733 |
Copyright terms: Public domain | W3C validator |