ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss GIF version

Theorem dfss 3167
Description: Variant of subclass definition df-ss 3166. (Contributed by NM, 3-Sep-2004.)
Assertion
Ref Expression
dfss (𝐴𝐵𝐴 = (𝐴𝐵))

Proof of Theorem dfss
StepHypRef Expression
1 df-ss 3166 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 eqcom 2195 . 2 ((𝐴𝐵) = 𝐴𝐴 = (𝐴𝐵))
31, 2bitri 184 1 (𝐴𝐵𝐴 = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cin 3152  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ss 3166
This theorem is referenced by:  dfss2  3168  onelini  4461  cnvcnv  5118  funimass1  5331  sbthlemi5  7020  dmaddpi  7385  dmmulpi  7386  tgioo  14714
  Copyright terms: Public domain W3C validator