Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss | GIF version |
Description: Variant of subclass definition df-ss 3129. (Contributed by NM, 3-Sep-2004.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3129 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2167 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 183 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∩ cin 3115 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ss 3129 |
This theorem is referenced by: dfss2 3131 onelini 4408 cnvcnv 5056 funimass1 5265 sbthlemi5 6926 dmaddpi 7266 dmmulpi 7267 tgioo 13186 |
Copyright terms: Public domain | W3C validator |