ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelini Unicode version

Theorem onelini 4518
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onelini  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4517 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 dfss 3211 . 2  |-  ( B 
C_  A  <->  B  =  ( B  i^i  A ) )
42, 3sylib 122 1  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator