ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelini Unicode version

Theorem onelini 4482
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onelini  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4481 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 dfss 3182 . 2  |-  ( B 
C_  A  <->  B  =  ( B  i^i  A ) )
42, 3sylib 122 1  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    i^i cin 3167    C_ wss 3168   Oncon0 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3174  df-ss 3181  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator