Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvcnv | Unicode version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
cnvcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . . . 5 | |
2 | df-rel 4611 | . . . . 5 | |
3 | 1, 2 | mpbi 144 | . . . 4 |
4 | relxp 4713 | . . . . 5 | |
5 | dfrel2 5054 | . . . . 5 | |
6 | 4, 5 | mpbi 144 | . . . 4 |
7 | 3, 6 | sseqtrri 3177 | . . 3 |
8 | dfss 3130 | . . 3 | |
9 | 7, 8 | mpbi 144 | . 2 |
10 | cnvin 5011 | . 2 | |
11 | cnvin 5011 | . . . 4 | |
12 | 11 | cnveqi 4779 | . . 3 |
13 | inss2 3343 | . . . . 5 | |
14 | df-rel 4611 | . . . . 5 | |
15 | 13, 14 | mpbir 145 | . . . 4 |
16 | dfrel2 5054 | . . . 4 | |
17 | 15, 16 | mpbi 144 | . . 3 |
18 | 12, 17 | eqtr3i 2188 | . 2 |
19 | 9, 10, 18 | 3eqtr2i 2192 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cvv 2726 cin 3115 wss 3116 cxp 4602 ccnv 4603 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: cnvcnv2 5057 cnvcnvss 5058 structcnvcnv 12410 strslfv2d 12436 |
Copyright terms: Public domain | W3C validator |