ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv Unicode version

Theorem cnvcnv 5154
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5079 . . . . 5  |-  Rel  `' `' A
2 df-rel 4700 . . . . 5  |-  ( Rel  `' `' A  <->  `' `' A  C_  ( _V 
X.  _V ) )
31, 2mpbi 145 . . . 4  |-  `' `' A  C_  ( _V  X.  _V )
4 relxp 4802 . . . . 5  |-  Rel  ( _V  X.  _V )
5 dfrel2 5152 . . . . 5  |-  ( Rel  ( _V  X.  _V ) 
<->  `' `' ( _V  X.  _V )  =  ( _V  X.  _V ) )
64, 5mpbi 145 . . . 4  |-  `' `' ( _V  X.  _V )  =  ( _V  X.  _V )
73, 6sseqtrri 3236 . . 3  |-  `' `' A  C_  `' `' ( _V  X.  _V )
8 dfss 3188 . . 3  |-  ( `' `' A  C_  `' `' ( _V  X.  _V )  <->  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
) )
97, 8mpbi 145 . 2  |-  `' `' A  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
10 cnvin 5109 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( `' `' A  i^i  `' `' ( _V  X.  _V )
)
11 cnvin 5109 . . . 4  |-  `' ( A  i^i  ( _V 
X.  _V ) )  =  ( `' A  i^i  `' ( _V  X.  _V ) )
1211cnveqi 4871 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  `' ( `' A  i^i  `' ( _V  X.  _V )
)
13 inss2 3402 . . . . 5  |-  ( A  i^i  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
14 df-rel 4700 . . . . 5  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <-> 
( A  i^i  ( _V  X.  _V ) ) 
C_  ( _V  X.  _V ) )
1513, 14mpbir 146 . . . 4  |-  Rel  ( A  i^i  ( _V  X.  _V ) )
16 dfrel2 5152 . . . 4  |-  ( Rel  ( A  i^i  ( _V  X.  _V ) )  <->  `' `' ( A  i^i  ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) ) )
1715, 16mpbi 145 . . 3  |-  `' `' ( A  i^i  ( _V  X.  _V ) )  =  ( A  i^i  ( _V  X.  _V )
)
1812, 17eqtr3i 2230 . 2  |-  `' ( `' A  i^i  `' ( _V  X.  _V )
)  =  ( A  i^i  ( _V  X.  _V ) )
199, 10, 183eqtr2i 2234 1  |-  `' `' A  =  ( A  i^i  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2776    i^i cin 3173    C_ wss 3174    X. cxp 4691   `'ccnv 4692   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  cnvcnv2  5155  cnvcnvss  5156  structcnvcnv  12963  strslfv2d  12990
  Copyright terms: Public domain W3C validator