| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi5 | Unicode version | ||
| Description: Lemma for isbth 7033. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.3 |
. . . . 5
| |
| 2 | 1 | dmeqi 4867 |
. . . 4
|
| 3 | dmun 4873 |
. . . 4
| |
| 4 | dmres 4967 |
. . . . 5
| |
| 5 | dmres 4967 |
. . . . . 6
| |
| 6 | df-rn 4674 |
. . . . . . . 8
| |
| 7 | 6 | eqcomi 2200 |
. . . . . . 7
|
| 8 | 7 | ineq2i 3361 |
. . . . . 6
|
| 9 | 5, 8 | eqtri 2217 |
. . . . 5
|
| 10 | 4, 9 | uneq12i 3315 |
. . . 4
|
| 11 | 2, 3, 10 | 3eqtri 2221 |
. . 3
|
| 12 | sbthlem.1 |
. . . . . . . . . 10
| |
| 13 | sbthlem.2 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sbthlem1 7023 |
. . . . . . . . 9
|
| 15 | difss 3289 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sstri 3192 |
. . . . . . . 8
|
| 17 | sseq2 3207 |
. . . . . . . 8
| |
| 18 | 16, 17 | mpbiri 168 |
. . . . . . 7
|
| 19 | dfss 3171 |
. . . . . . 7
| |
| 20 | 18, 19 | sylib 122 |
. . . . . 6
|
| 21 | 20 | uneq1d 3316 |
. . . . 5
|
| 22 | 12, 13 | sbthlemi3 7025 |
. . . . . . . 8
|
| 23 | imassrn 5020 |
. . . . . . . 8
| |
| 24 | 22, 23 | eqsstrrdi 3236 |
. . . . . . 7
|
| 25 | dfss 3171 |
. . . . . . 7
| |
| 26 | 24, 25 | sylib 122 |
. . . . . 6
|
| 27 | 26 | uneq2d 3317 |
. . . . 5
|
| 28 | 21, 27 | sylan9eq 2249 |
. . . 4
|
| 29 | 28 | an12s 565 |
. . 3
|
| 30 | 11, 29 | eqtr4id 2248 |
. 2
|
| 31 | undifdcss 6984 |
. . . . 5
| |
| 32 | exmidexmid 4229 |
. . . . . . 7
| |
| 33 | 32 | ralrimivw 2571 |
. . . . . 6
|
| 34 | 33 | biantrud 304 |
. . . . 5
|
| 35 | 31, 34 | bitr4id 199 |
. . . 4
|
| 36 | 16, 35 | mpbiri 168 |
. . 3
|
| 37 | 36 | adantr 276 |
. 2
|
| 38 | 30, 37 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-exmid 4228 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: sbthlemi9 7031 |
| Copyright terms: Public domain | W3C validator |