ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 Unicode version

Theorem sbthlemi5 7128
Description: Lemma for isbth 7134. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi5  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
21dmeqi 4924 . . . 4  |-  dom  H  =  dom  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
3 dmun 4930 . . . 4  |-  dom  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )
4 dmres 5026 . . . . 5  |-  dom  (
f  |`  U. D )  =  ( U. D  i^i  dom  f )
5 dmres 5026 . . . . . 6  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
dom  `' g )
6 df-rn 4730 . . . . . . . 8  |-  ran  g  =  dom  `' g
76eqcomi 2233 . . . . . . 7  |-  dom  `' g  =  ran  g
87ineq2i 3402 . . . . . 6  |-  ( ( A  \  U. D
)  i^i  dom  `' g )  =  ( ( A  \  U. D
)  i^i  ran  g )
95, 8eqtri 2250 . . . . 5  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
ran  g )
104, 9uneq12i 3356 . . . 4  |-  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) )
112, 3, 103eqtri 2254 . . 3  |-  dom  H  =  ( ( U. D  i^i  dom  f )  u.  ( ( A  \  U. D )  i^i  ran  g ) )
12 sbthlem.1 . . . . . . . . . 10  |-  A  e. 
_V
13 sbthlem.2 . . . . . . . . . 10  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1412, 13sbthlem1 7124 . . . . . . . . 9  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
15 difss 3330 . . . . . . . . 9  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
1614, 15sstri 3233 . . . . . . . 8  |-  U. D  C_  A
17 sseq2 3248 . . . . . . . 8  |-  ( dom  f  =  A  -> 
( U. D  C_  dom  f  <->  U. D  C_  A
) )
1816, 17mpbiri 168 . . . . . . 7  |-  ( dom  f  =  A  ->  U. D  C_  dom  f
)
19 dfss 3211 . . . . . . 7  |-  ( U. D  C_  dom  f  <->  U. D  =  ( U. D  i^i  dom  f ) )
2018, 19sylib 122 . . . . . 6  |-  ( dom  f  =  A  ->  U. D  =  ( U. D  i^i  dom  f
) )
2120uneq1d 3357 . . . . 5  |-  ( dom  f  =  A  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  ( A  \  U. D ) ) )
2212, 13sbthlemi3 7126 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
23 imassrn 5079 . . . . . . . 8  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
2422, 23eqsstrrdi 3277 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  C_  ran  g )
25 dfss 3211 . . . . . . 7  |-  ( ( A  \  U. D
)  C_  ran  g  <->  ( A  \ 
U. D )  =  ( ( A  \  U. D )  i^i  ran  g ) )
2624, 25sylib 122 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( ( A  \  U. D )  i^i  ran  g ) )
2726uneq2d 3358 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( ( U. D  i^i  dom  f
)  u.  ( A 
\  U. D ) )  =  ( ( U. D  i^i  dom  f )  u.  ( ( A  \  U. D )  i^i  ran  g ) ) )
2821, 27sylan9eq 2282 . . . 4  |-  ( ( dom  f  =  A  /\  (EXMID 
/\  ran  g  C_  A ) )  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
2928an12s 565 . . 3  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
3011, 29eqtr4id 2281 . 2  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  ( U. D  u.  ( A  \ 
U. D ) ) )
31 undifdcss 7085 . . . . 5  |-  ( A  =  ( U. D  u.  ( A  \  U. D ) )  <->  ( U. D  C_  A  /\  A. y  e.  A DECID  y  e.  U. D ) )
32 exmidexmid 4280 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  U. D
)
3332ralrimivw 2604 . . . . . 6  |-  (EXMID  ->  A. y  e.  A DECID  y  e.  U. D
)
3433biantrud 304 . . . . 5  |-  (EXMID  ->  ( U. D  C_  A  <->  ( U. D  C_  A  /\  A. y  e.  A DECID  y  e.  U. D ) ) )
3531, 34bitr4id 199 . . . 4  |-  (EXMID  ->  ( A  =  ( U. D  u.  ( A  \ 
U. D ) )  <->  U. D  C_  A ) )
3616, 35mpbiri 168 . . 3  |-  (EXMID  ->  A  =  ( U. D  u.  ( A  \  U. D ) ) )
3736adantr 276 . 2  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  A  =  ( U. D  u.  ( A  \ 
U. D ) ) )
3830, 37eqtr4d 2265 1  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196    C_ wss 3197   U.cuni 3888  EXMIDwem 4278   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-exmid 4279  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  sbthlemi9  7132
  Copyright terms: Public domain W3C validator