ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 Unicode version

Theorem sbthlemi5 7089
Description: Lemma for isbth 7095. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi5  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
21dmeqi 4898 . . . 4  |-  dom  H  =  dom  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
3 dmun 4904 . . . 4  |-  dom  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )
4 dmres 4999 . . . . 5  |-  dom  (
f  |`  U. D )  =  ( U. D  i^i  dom  f )
5 dmres 4999 . . . . . 6  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
dom  `' g )
6 df-rn 4704 . . . . . . . 8  |-  ran  g  =  dom  `' g
76eqcomi 2211 . . . . . . 7  |-  dom  `' g  =  ran  g
87ineq2i 3379 . . . . . 6  |-  ( ( A  \  U. D
)  i^i  dom  `' g )  =  ( ( A  \  U. D
)  i^i  ran  g )
95, 8eqtri 2228 . . . . 5  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
ran  g )
104, 9uneq12i 3333 . . . 4  |-  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) )
112, 3, 103eqtri 2232 . . 3  |-  dom  H  =  ( ( U. D  i^i  dom  f )  u.  ( ( A  \  U. D )  i^i  ran  g ) )
12 sbthlem.1 . . . . . . . . . 10  |-  A  e. 
_V
13 sbthlem.2 . . . . . . . . . 10  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
1412, 13sbthlem1 7085 . . . . . . . . 9  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
15 difss 3307 . . . . . . . . 9  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
1614, 15sstri 3210 . . . . . . . 8  |-  U. D  C_  A
17 sseq2 3225 . . . . . . . 8  |-  ( dom  f  =  A  -> 
( U. D  C_  dom  f  <->  U. D  C_  A
) )
1816, 17mpbiri 168 . . . . . . 7  |-  ( dom  f  =  A  ->  U. D  C_  dom  f
)
19 dfss 3188 . . . . . . 7  |-  ( U. D  C_  dom  f  <->  U. D  =  ( U. D  i^i  dom  f ) )
2018, 19sylib 122 . . . . . 6  |-  ( dom  f  =  A  ->  U. D  =  ( U. D  i^i  dom  f
) )
2120uneq1d 3334 . . . . 5  |-  ( dom  f  =  A  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  ( A  \  U. D ) ) )
2212, 13sbthlemi3 7087 . . . . . . . 8  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( g " ( B  \ 
( f " U. D ) ) )  =  ( A  \  U. D ) )
23 imassrn 5052 . . . . . . . 8  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
2422, 23eqsstrrdi 3254 . . . . . . 7  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  C_  ran  g )
25 dfss 3188 . . . . . . 7  |-  ( ( A  \  U. D
)  C_  ran  g  <->  ( A  \ 
U. D )  =  ( ( A  \  U. D )  i^i  ran  g ) )
2624, 25sylib 122 . . . . . 6  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( A  \ 
U. D )  =  ( ( A  \  U. D )  i^i  ran  g ) )
2726uneq2d 3335 . . . . 5  |-  ( (EXMID  /\ 
ran  g  C_  A
)  ->  ( ( U. D  i^i  dom  f
)  u.  ( A 
\  U. D ) )  =  ( ( U. D  i^i  dom  f )  u.  ( ( A  \  U. D )  i^i  ran  g ) ) )
2821, 27sylan9eq 2260 . . . 4  |-  ( ( dom  f  =  A  /\  (EXMID 
/\  ran  g  C_  A ) )  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
2928an12s 565 . . 3  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
3011, 29eqtr4id 2259 . 2  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  ( U. D  u.  ( A  \ 
U. D ) ) )
31 undifdcss 7046 . . . . 5  |-  ( A  =  ( U. D  u.  ( A  \  U. D ) )  <->  ( U. D  C_  A  /\  A. y  e.  A DECID  y  e.  U. D ) )
32 exmidexmid 4256 . . . . . . 7  |-  (EXMID  -> DECID  y  e.  U. D
)
3332ralrimivw 2582 . . . . . 6  |-  (EXMID  ->  A. y  e.  A DECID  y  e.  U. D
)
3433biantrud 304 . . . . 5  |-  (EXMID  ->  ( U. D  C_  A  <->  ( U. D  C_  A  /\  A. y  e.  A DECID  y  e.  U. D ) ) )
3531, 34bitr4id 199 . . . 4  |-  (EXMID  ->  ( A  =  ( U. D  u.  ( A  \ 
U. D ) )  <->  U. D  C_  A ) )
3616, 35mpbiri 168 . . 3  |-  (EXMID  ->  A  =  ( U. D  u.  ( A  \  U. D ) ) )
3736adantr 276 . 2  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  A  =  ( U. D  u.  ( A  \ 
U. D ) ) )
3830, 37eqtr4d 2243 1  |-  ( (EXMID  /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173    C_ wss 3174   U.cuni 3864  EXMIDwem 4254   `'ccnv 4692   dom cdm 4693   ran crn 4694    |` cres 4695   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-exmid 4255  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  sbthlemi9  7093
  Copyright terms: Public domain W3C validator