| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi5 | Unicode version | ||
| Description: Lemma for isbth 7134. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.3 |
. . . . 5
| |
| 2 | 1 | dmeqi 4924 |
. . . 4
|
| 3 | dmun 4930 |
. . . 4
| |
| 4 | dmres 5026 |
. . . . 5
| |
| 5 | dmres 5026 |
. . . . . 6
| |
| 6 | df-rn 4730 |
. . . . . . . 8
| |
| 7 | 6 | eqcomi 2233 |
. . . . . . 7
|
| 8 | 7 | ineq2i 3402 |
. . . . . 6
|
| 9 | 5, 8 | eqtri 2250 |
. . . . 5
|
| 10 | 4, 9 | uneq12i 3356 |
. . . 4
|
| 11 | 2, 3, 10 | 3eqtri 2254 |
. . 3
|
| 12 | sbthlem.1 |
. . . . . . . . . 10
| |
| 13 | sbthlem.2 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sbthlem1 7124 |
. . . . . . . . 9
|
| 15 | difss 3330 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sstri 3233 |
. . . . . . . 8
|
| 17 | sseq2 3248 |
. . . . . . . 8
| |
| 18 | 16, 17 | mpbiri 168 |
. . . . . . 7
|
| 19 | dfss 3211 |
. . . . . . 7
| |
| 20 | 18, 19 | sylib 122 |
. . . . . 6
|
| 21 | 20 | uneq1d 3357 |
. . . . 5
|
| 22 | 12, 13 | sbthlemi3 7126 |
. . . . . . . 8
|
| 23 | imassrn 5079 |
. . . . . . . 8
| |
| 24 | 22, 23 | eqsstrrdi 3277 |
. . . . . . 7
|
| 25 | dfss 3211 |
. . . . . . 7
| |
| 26 | 24, 25 | sylib 122 |
. . . . . 6
|
| 27 | 26 | uneq2d 3358 |
. . . . 5
|
| 28 | 21, 27 | sylan9eq 2282 |
. . . 4
|
| 29 | 28 | an12s 565 |
. . 3
|
| 30 | 11, 29 | eqtr4id 2281 |
. 2
|
| 31 | undifdcss 7085 |
. . . . 5
| |
| 32 | exmidexmid 4280 |
. . . . . . 7
| |
| 33 | 32 | ralrimivw 2604 |
. . . . . 6
|
| 34 | 33 | biantrud 304 |
. . . . 5
|
| 35 | 31, 34 | bitr4id 199 |
. . . 4
|
| 36 | 16, 35 | mpbiri 168 |
. . 3
|
| 37 | 36 | adantr 276 |
. 2
|
| 38 | 30, 37 | eqtr4d 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-exmid 4279 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: sbthlemi9 7132 |
| Copyright terms: Public domain | W3C validator |