Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi5 | Unicode version |
Description: Lemma for isbth 6940. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlemi5 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.3 | . . . . 5 | |
2 | 1 | dmeqi 4810 | . . . 4 |
3 | dmun 4816 | . . . 4 | |
4 | dmres 4910 | . . . . 5 | |
5 | dmres 4910 | . . . . . 6 | |
6 | df-rn 4620 | . . . . . . . 8 | |
7 | 6 | eqcomi 2174 | . . . . . . 7 |
8 | 7 | ineq2i 3325 | . . . . . 6 |
9 | 5, 8 | eqtri 2191 | . . . . 5 |
10 | 4, 9 | uneq12i 3279 | . . . 4 |
11 | 2, 3, 10 | 3eqtri 2195 | . . 3 |
12 | sbthlem.1 | . . . . . . . . . 10 | |
13 | sbthlem.2 | . . . . . . . . . 10 | |
14 | 12, 13 | sbthlem1 6930 | . . . . . . . . 9 |
15 | difss 3253 | . . . . . . . . 9 | |
16 | 14, 15 | sstri 3156 | . . . . . . . 8 |
17 | sseq2 3171 | . . . . . . . 8 | |
18 | 16, 17 | mpbiri 167 | . . . . . . 7 |
19 | dfss 3135 | . . . . . . 7 | |
20 | 18, 19 | sylib 121 | . . . . . 6 |
21 | 20 | uneq1d 3280 | . . . . 5 |
22 | 12, 13 | sbthlemi3 6932 | . . . . . . . 8 EXMID |
23 | imassrn 4962 | . . . . . . . 8 | |
24 | 22, 23 | eqsstrrdi 3200 | . . . . . . 7 EXMID |
25 | dfss 3135 | . . . . . . 7 | |
26 | 24, 25 | sylib 121 | . . . . . 6 EXMID |
27 | 26 | uneq2d 3281 | . . . . 5 EXMID |
28 | 21, 27 | sylan9eq 2223 | . . . 4 EXMID |
29 | 28 | an12s 560 | . . 3 EXMID |
30 | 11, 29 | eqtr4id 2222 | . 2 EXMID |
31 | undifdcss 6896 | . . . . 5 DECID | |
32 | exmidexmid 4180 | . . . . . . 7 EXMID DECID | |
33 | 32 | ralrimivw 2544 | . . . . . 6 EXMID DECID |
34 | 33 | biantrud 302 | . . . . 5 EXMID DECID |
35 | 31, 34 | bitr4id 198 | . . . 4 EXMID |
36 | 16, 35 | mpbiri 167 | . . 3 EXMID |
37 | 36 | adantr 274 | . 2 EXMID |
38 | 30, 37 | eqtr4d 2206 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 829 wceq 1348 wcel 2141 cab 2156 wral 2448 cvv 2730 cdif 3118 cun 3119 cin 3120 wss 3121 cuni 3794 EXMIDwem 4178 ccnv 4608 cdm 4609 crn 4610 cres 4611 cima 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-exmid 4179 df-xp 4615 df-cnv 4617 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 |
This theorem is referenced by: sbthlemi9 6938 |
Copyright terms: Public domain | W3C validator |