| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi5 | Unicode version | ||
| Description: Lemma for isbth 7095. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| sbthlem.3 |
|
| Ref | Expression |
|---|---|
| sbthlemi5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.3 |
. . . . 5
| |
| 2 | 1 | dmeqi 4898 |
. . . 4
|
| 3 | dmun 4904 |
. . . 4
| |
| 4 | dmres 4999 |
. . . . 5
| |
| 5 | dmres 4999 |
. . . . . 6
| |
| 6 | df-rn 4704 |
. . . . . . . 8
| |
| 7 | 6 | eqcomi 2211 |
. . . . . . 7
|
| 8 | 7 | ineq2i 3379 |
. . . . . 6
|
| 9 | 5, 8 | eqtri 2228 |
. . . . 5
|
| 10 | 4, 9 | uneq12i 3333 |
. . . 4
|
| 11 | 2, 3, 10 | 3eqtri 2232 |
. . 3
|
| 12 | sbthlem.1 |
. . . . . . . . . 10
| |
| 13 | sbthlem.2 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | sbthlem1 7085 |
. . . . . . . . 9
|
| 15 | difss 3307 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sstri 3210 |
. . . . . . . 8
|
| 17 | sseq2 3225 |
. . . . . . . 8
| |
| 18 | 16, 17 | mpbiri 168 |
. . . . . . 7
|
| 19 | dfss 3188 |
. . . . . . 7
| |
| 20 | 18, 19 | sylib 122 |
. . . . . 6
|
| 21 | 20 | uneq1d 3334 |
. . . . 5
|
| 22 | 12, 13 | sbthlemi3 7087 |
. . . . . . . 8
|
| 23 | imassrn 5052 |
. . . . . . . 8
| |
| 24 | 22, 23 | eqsstrrdi 3254 |
. . . . . . 7
|
| 25 | dfss 3188 |
. . . . . . 7
| |
| 26 | 24, 25 | sylib 122 |
. . . . . 6
|
| 27 | 26 | uneq2d 3335 |
. . . . 5
|
| 28 | 21, 27 | sylan9eq 2260 |
. . . 4
|
| 29 | 28 | an12s 565 |
. . 3
|
| 30 | 11, 29 | eqtr4id 2259 |
. 2
|
| 31 | undifdcss 7046 |
. . . . 5
| |
| 32 | exmidexmid 4256 |
. . . . . . 7
| |
| 33 | 32 | ralrimivw 2582 |
. . . . . 6
|
| 34 | 33 | biantrud 304 |
. . . . 5
|
| 35 | 31, 34 | bitr4id 199 |
. . . 4
|
| 36 | 16, 35 | mpbiri 168 |
. . 3
|
| 37 | 36 | adantr 276 |
. 2
|
| 38 | 30, 37 | eqtr4d 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-exmid 4255 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: sbthlemi9 7093 |
| Copyright terms: Public domain | W3C validator |