Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi5 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlemi5 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.3 | . . . . 5 | |
2 | 1 | dmeqi 4805 | . . . 4 |
3 | dmun 4811 | . . . 4 | |
4 | dmres 4905 | . . . . 5 | |
5 | dmres 4905 | . . . . . 6 | |
6 | df-rn 4615 | . . . . . . . 8 | |
7 | 6 | eqcomi 2169 | . . . . . . 7 |
8 | 7 | ineq2i 3320 | . . . . . 6 |
9 | 5, 8 | eqtri 2186 | . . . . 5 |
10 | 4, 9 | uneq12i 3274 | . . . 4 |
11 | 2, 3, 10 | 3eqtri 2190 | . . 3 |
12 | sbthlem.1 | . . . . . . . . . 10 | |
13 | sbthlem.2 | . . . . . . . . . 10 | |
14 | 12, 13 | sbthlem1 6922 | . . . . . . . . 9 |
15 | difss 3248 | . . . . . . . . 9 | |
16 | 14, 15 | sstri 3151 | . . . . . . . 8 |
17 | sseq2 3166 | . . . . . . . 8 | |
18 | 16, 17 | mpbiri 167 | . . . . . . 7 |
19 | dfss 3130 | . . . . . . 7 | |
20 | 18, 19 | sylib 121 | . . . . . 6 |
21 | 20 | uneq1d 3275 | . . . . 5 |
22 | 12, 13 | sbthlemi3 6924 | . . . . . . . 8 EXMID |
23 | imassrn 4957 | . . . . . . . 8 | |
24 | 22, 23 | eqsstrrdi 3195 | . . . . . . 7 EXMID |
25 | dfss 3130 | . . . . . . 7 | |
26 | 24, 25 | sylib 121 | . . . . . 6 EXMID |
27 | 26 | uneq2d 3276 | . . . . 5 EXMID |
28 | 21, 27 | sylan9eq 2219 | . . . 4 EXMID |
29 | 28 | an12s 555 | . . 3 EXMID |
30 | 11, 29 | eqtr4id 2218 | . 2 EXMID |
31 | undifdcss 6888 | . . . . 5 DECID | |
32 | exmidexmid 4175 | . . . . . . 7 EXMID DECID | |
33 | 32 | ralrimivw 2540 | . . . . . 6 EXMID DECID |
34 | 33 | biantrud 302 | . . . . 5 EXMID DECID |
35 | 31, 34 | bitr4id 198 | . . . 4 EXMID |
36 | 16, 35 | mpbiri 167 | . . 3 EXMID |
37 | 36 | adantr 274 | . 2 EXMID |
38 | 30, 37 | eqtr4d 2201 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 cab 2151 wral 2444 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 cuni 3789 EXMIDwem 4173 ccnv 4603 cdm 4604 crn 4605 cres 4606 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: sbthlemi9 6930 |
Copyright terms: Public domain | W3C validator |