ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3f Unicode version

Theorem dfss3f 3185
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1  |-  F/_ x A
dfss2f.2  |-  F/_ x B
Assertion
Ref Expression
dfss3f  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3  |-  F/_ x A
2 dfss2f.2 . . 3  |-  F/_ x B
31, 2dfss2f 3184 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
4 df-ral 2489 . 2  |-  ( A. x  e.  A  x  e.  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
53, 4bitr4i 187 1  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2176   F/_wnfc 2335   A.wral 2484    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-in 3172  df-ss 3179
This theorem is referenced by:  nfss  3186
  Copyright terms: Public domain W3C validator