ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss Unicode version

Theorem nfss 3186
Description: If  x is not free in  A and  B, it is not free in  A 
C_  B. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1  |-  F/_ x A
dfss2f.2  |-  F/_ x B
Assertion
Ref Expression
nfss  |-  F/ x  A  C_  B

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3  |-  F/_ x A
2 dfss2f.2 . . 3  |-  F/_ x B
31, 2dfss3f 3185 . 2  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
4 nfra1 2537 . 2  |-  F/ x A. x  e.  A  x  e.  B
53, 4nfxfr 1497 1  |-  F/ x  A  C_  B
Colors of variables: wff set class
Syntax hints:   F/wnf 1483    e. wcel 2176   F/_wnfc 2335   A.wral 2484    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-in 3172  df-ss 3179
This theorem is referenced by:  ssrexf  3255  nfpw  3629  ssiun2s  3971  triun  4155  ssopab2b  4323  nffrfor  4395  tfis  4631  nfrel  4760  nffun  5294  nff  5422  fvmptssdm  5664  ssoprab2b  6002  nfsum1  11667  nfsum  11668  nfcprod1  11865  nfcprod  11866
  Copyright terms: Public domain W3C validator