| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfss | Unicode version | ||
| Description: If  | 
| Ref | Expression | 
|---|---|
| dfss2f.1 | 
 | 
| dfss2f.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfss | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss2f.1 | 
. . 3
 | |
| 2 | dfss2f.2 | 
. . 3
 | |
| 3 | 1, 2 | dfss3f 3175 | 
. 2
 | 
| 4 | nfra1 2528 | 
. 2
 | |
| 5 | 3, 4 | nfxfr 1488 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssrexf 3245 nfpw 3618 ssiun2s 3960 triun 4144 ssopab2b 4311 nffrfor 4383 tfis 4619 nfrel 4748 nffun 5281 nff 5404 fvmptssdm 5646 ssoprab2b 5979 nfsum1 11521 nfsum 11522 nfcprod1 11719 nfcprod 11720 | 
| Copyright terms: Public domain | W3C validator |