| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfss | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| dfss2f.1 |
|
| dfss2f.2 |
|
| Ref | Expression |
|---|---|
| nfss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2f.1 |
. . 3
| |
| 2 | dfss2f.2 |
. . 3
| |
| 3 | 1, 2 | dfss3f 3185 |
. 2
|
| 4 | nfra1 2537 |
. 2
| |
| 5 | 3, 4 | nfxfr 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssrexf 3255 nfpw 3629 ssiun2s 3971 triun 4155 ssopab2b 4323 nffrfor 4395 tfis 4631 nfrel 4760 nffun 5294 nff 5422 fvmptssdm 5664 ssoprab2b 6002 nfsum1 11667 nfsum 11668 nfcprod1 11865 nfcprod 11866 |
| Copyright terms: Public domain | W3C validator |