ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss Unicode version

Theorem nfss 3149
Description: If  x is not free in  A and  B, it is not free in  A 
C_  B. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1  |-  F/_ x A
dfss2f.2  |-  F/_ x B
Assertion
Ref Expression
nfss  |-  F/ x  A  C_  B

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3  |-  F/_ x A
2 dfss2f.2 . . 3  |-  F/_ x B
31, 2dfss3f 3148 . 2  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
4 nfra1 2508 . 2  |-  F/ x A. x  e.  A  x  e.  B
53, 4nfxfr 1474 1  |-  F/ x  A  C_  B
Colors of variables: wff set class
Syntax hints:   F/wnf 1460    e. wcel 2148   F/_wnfc 2306   A.wral 2455    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-in 3136  df-ss 3143
This theorem is referenced by:  ssrexf  3218  nfpw  3589  ssiun2s  3931  triun  4115  ssopab2b  4277  nffrfor  4349  tfis  4583  nfrel  4712  nffun  5240  nff  5363  fvmptssdm  5601  ssoprab2b  5932  nfsum1  11364  nfsum  11365  nfcprod1  11562  nfcprod  11563
  Copyright terms: Public domain W3C validator