Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfss | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | |
dfss2f.2 |
Ref | Expression |
---|---|
nfss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 | |
2 | dfss2f.2 | . . 3 | |
3 | 1, 2 | dfss3f 3134 | . 2 |
4 | nfra1 2497 | . 2 | |
5 | 3, 4 | nfxfr 1462 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1448 wcel 2136 wnfc 2295 wral 2444 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssrexf 3204 nfpw 3572 ssiun2s 3910 triun 4093 ssopab2b 4254 nffrfor 4326 tfis 4560 nfrel 4689 nffun 5211 nff 5334 fvmptssdm 5570 ssoprab2b 5899 nfsum1 11297 nfsum 11298 nfcprod1 11495 nfcprod 11496 |
Copyright terms: Public domain | W3C validator |