Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfss | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | |
dfss2f.2 |
Ref | Expression |
---|---|
nfss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 | |
2 | dfss2f.2 | . . 3 | |
3 | 1, 2 | dfss3f 3120 | . 2 |
4 | nfra1 2488 | . 2 | |
5 | 3, 4 | nfxfr 1454 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1440 wcel 2128 wnfc 2286 wral 2435 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-in 3108 df-ss 3115 |
This theorem is referenced by: ssrexf 3190 nfpw 3556 ssiun2s 3893 triun 4075 ssopab2b 4236 nffrfor 4308 tfis 4541 nfrel 4670 nffun 5192 nff 5315 fvmptssdm 5551 ssoprab2b 5875 nfsum1 11248 nfsum 11249 nfcprod1 11446 nfcprod 11447 |
Copyright terms: Public domain | W3C validator |