ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss Unicode version

Theorem nfss 3194
Description: If  x is not free in  A and  B, it is not free in  A 
C_  B. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1  |-  F/_ x A
dfss2f.2  |-  F/_ x B
Assertion
Ref Expression
nfss  |-  F/ x  A  C_  B

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3  |-  F/_ x A
2 dfss2f.2 . . 3  |-  F/_ x B
31, 2dfss3f 3193 . 2  |-  ( A 
C_  B  <->  A. x  e.  A  x  e.  B )
4 nfra1 2539 . 2  |-  F/ x A. x  e.  A  x  e.  B
53, 4nfxfr 1498 1  |-  F/ x  A  C_  B
Colors of variables: wff set class
Syntax hints:   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   A.wral 2486    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-in 3180  df-ss 3187
This theorem is referenced by:  ssrexf  3263  nfpw  3639  ssiun2s  3985  triun  4171  ssopab2b  4341  nffrfor  4413  tfis  4649  nfrel  4778  nffun  5313  nff  5442  fvmptssdm  5687  ssoprab2b  6025  nfsum1  11782  nfsum  11783  nfcprod1  11980  nfcprod  11981
  Copyright terms: Public domain W3C validator