Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfss | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | |
dfss2f.2 |
Ref | Expression |
---|---|
nfss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 | |
2 | dfss2f.2 | . . 3 | |
3 | 1, 2 | dfss3f 3139 | . 2 |
4 | nfra1 2501 | . 2 | |
5 | 3, 4 | nfxfr 1467 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1453 wcel 2141 wnfc 2299 wral 2448 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssrexf 3209 nfpw 3579 ssiun2s 3917 triun 4100 ssopab2b 4261 nffrfor 4333 tfis 4567 nfrel 4696 nffun 5221 nff 5344 fvmptssdm 5580 ssoprab2b 5910 nfsum1 11319 nfsum 11320 nfcprod1 11517 nfcprod 11518 |
Copyright terms: Public domain | W3C validator |