| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfss | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| dfss2f.1 |
|
| dfss2f.2 |
|
| Ref | Expression |
|---|---|
| nfss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2f.1 |
. . 3
| |
| 2 | dfss2f.2 |
. . 3
| |
| 3 | 1, 2 | dfss3f 3193 |
. 2
|
| 4 | nfra1 2539 |
. 2
| |
| 5 | 3, 4 | nfxfr 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssrexf 3263 nfpw 3639 ssiun2s 3985 triun 4171 ssopab2b 4341 nffrfor 4413 tfis 4649 nfrel 4778 nffun 5313 nff 5442 fvmptssdm 5687 ssoprab2b 6025 nfsum1 11782 nfsum 11783 nfcprod1 11980 nfcprod 11981 |
| Copyright terms: Public domain | W3C validator |