| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfss | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| dfss2f.1 |
|
| dfss2f.2 |
|
| Ref | Expression |
|---|---|
| nfss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2f.1 |
. . 3
| |
| 2 | dfss2f.2 |
. . 3
| |
| 3 | 1, 2 | dfss3f 3176 |
. 2
|
| 4 | nfra1 2528 |
. 2
| |
| 5 | 3, 4 | nfxfr 1488 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssrexf 3246 nfpw 3619 ssiun2s 3961 triun 4145 ssopab2b 4312 nffrfor 4384 tfis 4620 nfrel 4749 nffun 5282 nff 5407 fvmptssdm 5649 ssoprab2b 5983 nfsum1 11538 nfsum 11539 nfcprod1 11736 nfcprod 11737 |
| Copyright terms: Public domain | W3C validator |