| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3f | GIF version | ||
| Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
| dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| dfss3f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss2f 3215 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 ∈ wcel 2200 Ⅎwnfc 2359 ∀wral 2508 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-in 3203 df-ss 3210 |
| This theorem is referenced by: nfss 3217 |
| Copyright terms: Public domain | W3C validator |