ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin0 Unicode version

Theorem difin0 3497
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0  |-  ( ( A  i^i  B ) 
\  B )  =  (/)

Proof of Theorem difin0
StepHypRef Expression
1 inss2 3357 . 2  |-  ( A  i^i  B )  C_  B
2 ssdif0im 3488 . 2  |-  ( ( A  i^i  B ) 
C_  B  ->  (
( A  i^i  B
)  \  B )  =  (/) )
31, 2ax-mp 5 1  |-  ( ( A  i^i  B ) 
\  B )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3127    i^i cin 3129    C_ wss 3130   (/)c0 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator