ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin0 Unicode version

Theorem difin0 3356
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0  |-  ( ( A  i^i  B ) 
\  B )  =  (/)

Proof of Theorem difin0
StepHypRef Expression
1 inss2 3221 . 2  |-  ( A  i^i  B )  C_  B
2 ssdif0im 3347 . 2  |-  ( ( A  i^i  B ) 
C_  B  ->  (
( A  i^i  B
)  \  B )  =  (/) )
31, 2ax-mp 7 1  |-  ( ( A  i^i  B ) 
\  B )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1289    \ cdif 2996    i^i cin 2998    C_ wss 2999   (/)c0 3286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 3001  df-in 3005  df-ss 3012  df-nul 3287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator