| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3393 |
. 2
| |
| 2 | inssdif0im 3528 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 |
| This theorem is referenced by: ssdifin0 3542 difdifdirss 3545 fvsnun1 5781 fvsnun2 5782 phplem2 6950 unfiin 7023 xpfi 7029 sbthlem7 7065 sbthlemi8 7066 exmidfodomrlemim 7309 fihashssdif 10963 zfz1isolem1 10985 fsumlessfi 11771 fprodsplit1f 11945 setsfun 12867 setsfun0 12868 setsslid 12883 |
| Copyright terms: Public domain | W3C validator |