![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version |
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
disjdif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3355 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | inssdif0im 3490 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-dif 3131 df-in 3135 df-ss 3142 df-nul 3423 |
This theorem is referenced by: ssdifin0 3504 difdifdirss 3507 fvsnun1 5710 fvsnun2 5711 phplem2 6848 unfiin 6920 xpfi 6924 sbthlem7 6957 sbthlemi8 6958 exmidfodomrlemim 7195 fihashssdif 10789 zfz1isolem1 10811 fsumlessfi 11459 fprodsplit1f 11633 setsfun 12487 setsfun0 12488 setsslid 12503 |
Copyright terms: Public domain | W3C validator |