| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3384 |
. 2
| |
| 2 | inssdif0im 3519 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 |
| This theorem is referenced by: ssdifin0 3533 difdifdirss 3536 fvsnun1 5762 fvsnun2 5763 phplem2 6923 unfiin 6996 xpfi 7002 sbthlem7 7038 sbthlemi8 7039 exmidfodomrlemim 7280 fihashssdif 10927 zfz1isolem1 10949 fsumlessfi 11642 fprodsplit1f 11816 setsfun 12738 setsfun0 12739 setsslid 12754 |
| Copyright terms: Public domain | W3C validator |