![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version |
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
disjdif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3380 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | inssdif0im 3515 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 |
This theorem is referenced by: ssdifin0 3529 difdifdirss 3532 fvsnun1 5756 fvsnun2 5757 phplem2 6911 unfiin 6984 xpfi 6988 sbthlem7 7024 sbthlemi8 7025 exmidfodomrlemim 7263 fihashssdif 10892 zfz1isolem1 10914 fsumlessfi 11606 fprodsplit1f 11780 setsfun 12656 setsfun0 12657 setsslid 12672 |
Copyright terms: Public domain | W3C validator |