| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3401 |
. 2
| |
| 2 | inssdif0im 3536 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 |
| This theorem is referenced by: ssdifin0 3550 difdifdirss 3553 fvsnun1 5804 fvsnun2 5805 phplem2 6975 unfiin 7049 xpfi 7055 sbthlem7 7091 sbthlemi8 7092 exmidfodomrlemim 7340 fihashssdif 11000 zfz1isolem1 11022 fsumlessfi 11886 fprodsplit1f 12060 setsfun 12982 setsfun0 12983 setsslid 12998 |
| Copyright terms: Public domain | W3C validator |