| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version | ||
| Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| disjdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3392 |
. 2
| |
| 2 | inssdif0im 3527 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 |
| This theorem is referenced by: ssdifin0 3541 difdifdirss 3544 fvsnun1 5780 fvsnun2 5781 phplem2 6949 unfiin 7022 xpfi 7028 sbthlem7 7064 sbthlemi8 7065 exmidfodomrlemim 7308 fihashssdif 10961 zfz1isolem1 10983 fsumlessfi 11742 fprodsplit1f 11916 setsfun 12838 setsfun0 12839 setsslid 12854 |
| Copyright terms: Public domain | W3C validator |