Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjdif | Unicode version |
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
disjdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3327 | . 2 | |
2 | inssdif0im 3461 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cdif 3099 cin 3101 wss 3102 c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 |
This theorem is referenced by: ssdifin0 3475 difdifdirss 3478 fvsnun1 5661 fvsnun2 5662 phplem2 6791 unfiin 6863 xpfi 6867 sbthlem7 6900 sbthlemi8 6901 exmidfodomrlemim 7119 fihashssdif 10674 zfz1isolem1 10693 fsumlessfi 11339 fprodsplit1f 11513 setsfun 12185 setsfun0 12186 setsslid 12200 |
Copyright terms: Public domain | W3C validator |