ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif Unicode version

Theorem disjdif 3481
Description: A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
disjdif  |-  ( A  i^i  ( B  \  A ) )  =  (/)

Proof of Theorem disjdif
StepHypRef Expression
1 inss1 3342 . 2  |-  ( A  i^i  B )  C_  A
2 inssdif0im 3476 . 2  |-  ( ( A  i^i  B ) 
C_  A  ->  ( A  i^i  ( B  \  A ) )  =  (/) )
31, 2ax-mp 5 1  |-  ( A  i^i  ( B  \  A ) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    \ cdif 3113    i^i cin 3115    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  ssdifin0  3490  difdifdirss  3493  fvsnun1  5682  fvsnun2  5683  phplem2  6819  unfiin  6891  xpfi  6895  sbthlem7  6928  sbthlemi8  6929  exmidfodomrlemim  7157  fihashssdif  10731  zfz1isolem1  10753  fsumlessfi  11401  fprodsplit1f  11575  setsfun  12429  setsfun0  12430  setsslid  12444
  Copyright terms: Public domain W3C validator